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Abstract
This paper introduces a class of graphical independence models

that is closed under marginalization and conditioning but that con­
tains all DAG independence models. This class of graphs, called maxi­
mal ancestral graphs, has two attractive features: there is at most one
edge between each pair of vertices; every missing edge corresponds to
an independence relation. These features lead to a simple parametriza­
tion of the corresponding set of distributions in the Gaussian case.
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1 Introduction

The purpose of this paper is to develop a class of graphical Markov mod­
els that is closed under marginalizing and conditioning, and to describe a
parametrization of this class in Gaussian case.
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A graphical Markov model uses a graph, consisting of vertices and edges to
represent conditional independence relations holding among a set of variables
(Lauritzen, 1979, Darroch et al., 1980). Three basic classes of graphs have
been used: undirected graphs (UGs), directed acyclic graphs (DAGs), and
chain graphs which are a generalization of the first two. (See Lauritzen, 1996;
Whittaker, 1990; Edwards, 1995.)

The associated statistical models have many desirable properties: they
are identified; the models are curved exponential families, with a well-defined
dimension; methods for fitting these models exist; unique maximum likeli­
hood estimates exist.

All of these properties are common to classes of models based on DAGs
and UGs. However, as we will now describe there is a fundamental difference
between these two classes.

Markov models based on UGs are closed under marginalization in the
following sense: if an undirected graph represents the conditional indepen­
dencies holding in a distribution then there is an undirected graph that rep­
resents the conditional independencies holding in any marginal of the distri­
bution. For example consider the graph U1 in Figure l(i) which represents
a first-order Markov chain. If we suppose that Y2 is not observed, then it is
self-evident that the conditional independence, ydLY4 IYs, which is implied
by U1 is represented by the undirected graph U2 in Figure l(ii), which does
not include Y2' In addition, U2 does not imply any additional independence
relations that are not also implied by U1 .

Yr Y2

(i)

Y3-Y4 Yr---Y3-Y4

(ii)

Figure 1: (i) an undirected graph U1 ; (ii) an undirected graph U2 representing
the conditional independence structure induced on {lfl, Ys, Y4} by U1 after
marginalizing Y2'

By contrast Markov models based on DAGs are not closed in this way.
Consider V1, shown DAG implies the following
independence relatlons:



DAG 1)1 could be used to represent two successive experiments where:

• t1 and tz are two completely randomized treatments, and hence there
are no edges that point towards either of these variables;

• Yl and yz represent two outcomes of interest;

• ho is the underlying health status of the patient;

• the first treatment has no effect on the second outcome hence there is
no edge t1 -+ yz.

There is no DAG containing only the vertices {tl, Y1, tz, yz} which rep­
resents the independence relations (t) and does not also imply some other
independence relation that is not implied by 1)1. Consequently, any DAG
model on these vertices will either fail to represent an independence rela­
tion, and hence contain 'too many' edges, or will impose some additional
independence restriction that is not implied by 1)1'

Suppose that the patient's underlying health status h is not observed,
and the generating structure 1)1 is unknown. In these circumstances, a con­
ventional analysis would consider DAG models containing edges that are
consistent with the known time order of the variables. Given sufficient data,
any DAG imposing an extra independence relation will be rejected by a
likelihood-ratio test, and a DAG representing some subset of the indepen­
dence relations, such as the DAG in Figure 2(ii), will be chosen. However,
any such graph will contain the extra edge t1 -+ Yz, and fail to represent
the marginal independence of these variables. Thus such an analysis would
conceal the fact that the first treatment does not affect the second outcome.
This is also an undesirable result from a purely predictive perspective, since
a model which incorporated this marginal independence constraint would be
more parsimonious.

Moreover, even if we were to consider DAGs that were compatible with
a non-temporal ordering of {Y1, yz, t1, tz}, we would still be unable to find
a DAG which represented all and only the independence relations in
An analysis based on undirected graphs, or chain graphs, under the LWF
global Markov property, would still include additional edges. is possible
to independence structure 1)1 a

but this not an "rf,if1r"",v



time: 2 3 4

~
tl-Yl~Y2

time: 1 2 3 4

(ii)

Figure 2: (i) a directed acyclic graph 'DI, representing a hypothesis concern­
ing two completely randomized treatments and two outcomes (see text for
further description); (ii) the DAG model 'D2 resulting from a conventional
analysis of {tI, VI, t2, V2}.

One response to this situation is to consider latent variable (LV) models,
since h is a hidden variable in the model described by 'D1. Though this is
certainly a possible approach in circumstances where much is known about
the generating process, it seems unwise in other situations since LV models
lack almost all of the desirable statistical properties attributed to graphical
models (without hidden variables) above. In particular:

LV models are not always identified;

the likelihood may be multi-modal;

any inference may be very sensitive to assumptions made about the
unobserved variables;

- LV models with hidden variables have been proved not to be curved
exponential families even in very simple cases (Geiger et al., 2001);

LV models do not in general have a well-defined dimension for use in
scores such as BIC, or x2-tests (this follows from the previous point);

.~ the set of distributions associated with an LV model may be difficult
to characterize Settimi and Smith, 1999, 1998, Geiger et al., 2001,
for recent results);

models do not form a tractable
hlclden v;3.n(tblt~S may be m(:orpol~atied,

many structures a

an arbitrary number



This presents the modeller with a dilemma: in many contexts it is clearly
unrealistic to assume that there are no unmeasured confounding variables,
and misleading analyses may result (as shown above). However, models that
explicitly include hidden variables may be very hard to work with for the
reasons just given.

The class of ancestral graph Markov models described in this paper is
intended to provide a partial resolution to this conundrum. This class extends
the class of DAG models, but is closed under marginalization. In addition,
as we show in this paper, at least in the Gaussian case these models retain
many of the desirable properties possessed by standard graphical models. It
should be noted however that two different DAG models may lead to the
same ancestral graph, so in this sense information is lost.

Up to this point we have considered closure under marginalization. There
is a similar notion of closure under conditioning that is motivated by con­
sidering selection effects (see Cox and Wermuth, 1996, Cooper, 1995). UG
Markov models are closed under conditioning, DAG models are not. The
class of Markov models described here is also closed under conditioning.

The remainder of the paper is organized as follows:

vVe introduce basic graphical notation and definitions in Section 2. Sec­
tion 3 introduces the class of ancestral graphs and the associated global
Markov property. We also define the subclass of maximal ancestral graphs,
which obey a pairwise Markov property.

In Section 4 we formally define the operation of marginalizing and con­
ditioning for independence models, and a corresponding graphical transfor­
mation. Theorem 4.18 establishes that the independence model associated
with the transformed graph is the same as the model resulting from applying
the operations of marginalizing and conditioning to the independence model
given by the original graph. It is also shown that the graphical transforma­
tions commute (Theorem 4.20).

Two extension results are proved in Section 5. It is first shown that by
adding edges a non-maximal graph may be made maximal and this exten­
sion is unique (Theorem 5. . Second, it is demonstrated that a maximal
graph may be made complete that there is an edge between every pair

a sequence additions preserve mcLXllllam)
~e(;tlCm 6 it is every ma,xnnal anc;estTal

transforming a structure



relation to the original ancestral graph (Theorem 6.4). Consequently, every
independence model associated with an ancestral graph may be obtained by
applying the operations of marginalizing and conditioning to some indepen­
dence model given by a DAG.

Section 7 relates the operations of marginalizing and conditioning that
have been defined for independence models to probability distributions. The­
orem 7.6 then shows that the global Markov property for ancestral graphs is
complete.

In Section 8 we define a Gaussian parametrization of an ancestral graph.
It is shown in Theorem 8.7 that each parameter is either a concentration, a
regression coefficient, or a residual variance or covariance. Theorem 8.14 es­
tablishes that if the graph is maximal then the set of Gaussian distributions
associated with the parametrization is exactly the set of Gaussian distribu­
tions which obey the global Markov property for the graph.

Section 9 contrasts the class of ancestral graphs to summary graphs, in­
troduced by Wermuth et al. (1994), and MC-graphs introduced by Koster
(1999a). Finally Section 10 contains a brief discussion.

2 Basic Definitions and Concepts

In this section we introduce notation and terminology for describing inde­
pendence models and graphs.

2.1 Independence lVIodels

An independence model J over a set V is a set of triples (X, Y I Z) where
X, Y and Z are disjoint subsets of V; X and Yare non-empty. The triple

I Z) is interpreted as saying that X is independent of Y given Z. In
Section 7 we relate this definition to conditional independence in a probability
distribution. (As defined here, an 'independence model' need not correspond
to the set of independence relations holding in any probability distribution.)

2.1.1 Graphical independence models

IS set
aSS:OCJlatljS an mclepen,clel1ce



with graph 9:

(X, Y I Z) E 'Je (9) <===? X is separated from Y by Z in 9 under criterion C

Such a criterion C is also referred to as a global ]v1arkov property. The
d-separation criterion introduced by Pearl (1988) is an example of such a
criterion.

2.2 Mixed Graphs

A mixed graph is a graph containing three types of edge, undirected, ( ),
directed, (-+), and bi-directed (f-+). We use the following terminology to
describe relations between variables in such a graph:

ex f3 neighbour ex E neg(f3)

If
ex f-+ ;B

in 9 then ex is a
spouse

of ;B, and
ex E spgCB)

ex-+f3 parent ex E pag(f3)

exrp child ex E chgCB)

Note that the three edge types should be considered as distinct symbols, and
in particular,

If there is an edge ex -+ or ex f-+ p then there is said to be an arrowhead at
;B on this edge. If there is at least one edge between a pair of vertices then
these vertices are adjacent. We do not allow a vertex to be adjacent to itself.

A graph 9' = (V', E ' ) is a subgraph of 9 (V, E) if V' ~ V and every
edge in 9 ' is present in 9. The induced subgraph of 9 over A, denoted 9A
has vertex set "4, and contains every edge present in 9 between the vertices
in A. (See Appendix A.l for more formal statements of these definitions.)

2.3 Paths and Edge Sequences

A sequence edges between ex and in 9 is an ordered (multi)set of edges
, ... , En), such that there exists a sequence of vertices (not necessarily dis-

tinct) (n ~ ,where Ei has endpoints Wi, Wi+l'

A sequence edges for which the corresponding sequence of vertices con-
no repetitions is called a will use bold greek (/-L) to deJ1ot,e

paths and single fraktur to sequences.



result of concatenating two paths with a common endpoint is not necessarily
a path, though it is always a sequence. Paths and sequences consisting of a
single vertex, corresponding to a sequence of no edges, are permitted for the
purpose of simplifying proofs; such paths will be called empty as the set of
associated edges is empty.

We denote a subpath of a path 1T', by 1T'(Wj, , ... ,ck), and
likewise for sequences. Unlike a subpath, a subsequence is not uniquely
specified by the start and end vertices, hence the context will also make clear
which occurrence of each vertex in the sequence is referred to.

We define a path as a sequence of edges rather than vertices because the
latter does not specify a unique path when there may be two edges between
a given pair of vertices. (However, from Section 3 on we will only consider
graphs containing at most one edge between each pair of vertices.) A path
of the form a -+ ... -+ (3, on which every edge is of the form with the
arrowheads pointing towards ,8 is a directed path from a to ;8.

2.4 Ancestors and Anterior Vertices

A vertex a is said to be an ancestor of a vertex ;8 if either there is a directed
path a -+ ... -+ (3 from a to or a iB.

A vertex a is said to be anterior to a vertex iB if there is a path J-L on
which every edge is either of the form ~( 6, or r -+ 6 with 6 between ~( and
(3, or a = i.e. there are no edges ~( B 6 and there are no edges ~( *- 6
pointing towards a. Such a path is said to be an anterior path from a to

We apply these definitions disjunctively to sets:

an(X)

ant(X)

{a I a is an ancestor of ,B for some ;B EX};

{a a is anterior to for some iB EX}.

Our usage of the terms 'ancestor' and 'anterior' differs from Lauritzen
(1996), but follows Frydenberg (1990a).

Proposition 2.1 In a mixed graph 9

If X t;:;:: Y c c



Proof: These properties follow directly from the definitions of an(·) and
ant(·). 0

Proposition 2.2 If X and Yare disjoint sets of vertices in a mixed graph
9 then

(i) ant(ant(X) \ Y) = ant(X);

(ii) an(an(X) \ Y) = an(X).

Proof: (i) Since X and Yare disjoint, X ~ ant(X) \ Y. By Proposition
2.1(i), ant(X) ~ ant(ant(X) \ Y). Conversely, ant(X) \ Y ~ ant(X) so
ant(ant(X) \ Y) ~ ant(ant(X)) = ant(X), by Proposition 2.1(i) and (ii).

The proof of (ii) is very similar. 0

A directed path from a to (3 together with an edge (3 -+ a is called a
(fully) directed cycle. An anterior path from a to f3 together with an edge
(3 -+ a is called a partially directed cycle. A directed acyclic graph (DA G)
is a mixed graph in which all edges are directed, and there are no directed
cycles.

3 Ancestral Graphs

The class of mixed graphs is much larger than required for our purposes, in
particular, under natural separation criteria, it includes independence models
that do not correspond to DAG models under marginalizing and conditioning.
\Ve now introduce the subclass of ancestral graphs.

3.1 Definition of an ancestral graph

An ancestral graph 9 is a mixed graph in which the following conditions hold
for all vertices a in g:

u

if =I- 0 then 0.



In words, condition requires that if a and are joined by an edge with an
arrowhead at a, then a is not anterior to Condition (ii) requires that there
be no arrowheads present at a vertex which is an endpoint of an undirected
edge. Condition (i) implies that if a and ,8 are joined by an edge with an
arrowhead at a, then a is not an ancestor of This is the motivation
for terming such graphs 'ancestral'. (See also Corollary 3.10.) Examples of
ancestral and non-ancestral mixed graphs are shown in Figure 3.

(a)

a-b

t i
c-d

a-b

1~1
(b)

Figure 3: (a) Mixed graphs that are not ancestral; (b) ancestral mixed graphs.

Lemma 3.1 In an ancestral graph for every vertex a the sets ne(a), pa(a),
ch(a) and sp(a) are disjoint, thus there is at most one edge between any pair
of vertices.

Proof: ne(a), pa(a) and ch(a) are disjoint by condition (i). ne(a) nsp(a)
oby (ii) since at most one of these sets is non-empty. Finally (i) implies that
sp(a) n pa(a) ~ sp(a) n ant(a) = 0, and likewise sp(a) n ch(a) = 0. 0

Lemma 3.2 If 9 is an ancestral graph then the following hold:

(a) If a and ,8 are adjacent in 9 and a E an(8) then a -+ ,8.

(b) The configurations a - (3 H and a - ,8 +- "y do not occur (regardless
of whether a and "'f are adjacent).

There are no directed cycles or pa'ltially directed cycles.

9 to

Proof: follows because condition rules out a +-
rules out L1' a restatement

bej;wE~en two vprtl('l=", a



Corollary 3.3 In an ancestral graph an anterior path from ex to f3 takes one
of three forms: ex ex -+ ... -+ ,8, or ex - ... - -+ .. , -+

Proof: Follows from the definition of an anterior path and Lemma 3.2(b).0

Proposition 3.4 If 9 is an undirected graph, or a directed acyclic graph,
then 9 is an ancestral graph.

Proposition 3.5 If 9 is an ancestral graph and 9' is a subgraph of 9, then
9' is ancestral.

Proof: The definition of an ancestral graph only forbids certain configu­
rations of edges. If these do not occur in 9 then they do not occur in a
subgraph 9'. 0

3.2 Undirected Edges in an Ancestral Graph

Let ung == {ex I pag(ex) U SPg(ex) = 0}, be the set of vertices at which no
arrowheads are present in 9. Note that if neg (ex) =I 0 then, by condition (ii)
in the definition of an ancestral graph, ex E ung, so ung contains all endpoints
of undirected edges in 9.

Proposition 3.6 If 9 is an ancestral graph, and 9' is a subgraph with the
same vertex set, then ung ~ ungl •

Proof: Since 9' has a subset of the edges in 9, pag(ex) U spg(ex) = 0 implies
pag/(ex) U SPg/(ex) = 0. 0

Lemma 3.7 If 9 is an ancestral graph with vertex set V

and { : B: }in 9 then { a,:: ~~:'9 }.
ex -+ f3 13 E Y \ ung

Proof: Follows directly from definition of ung and Lemma 3.2(b). 0

Lemma 3.7 shows that any ancestral graph can be split into an undirected
graph 9ung, and an ancestral graph containing no undirected edges
any between a vertex ex E ung and a vertex E V ung takes form
ex -+ 4. This result is useful in developing parametrizations
for resulting independence models Section



Figure 4: Schematic showing decomposition of an ancestral graph into an
undirected graph and a graph containing no undirected edges.

Lemma 3.8 For an ancestral graph g,

(i) if a E ung then ,8 E antg(a) =>- a E antg(8);

(ii) if a and f3 are such that a =t a E antg(8) and ,8 E antg(a) then
a, ,8 E ung, and there is a path joining a and f3 on which every edge is
undirected;

(iii) antg(a) \ ang(a) t;;;; ung.

Proof: (i) follows from Lemma 3.2(b) and Corollary 3.3. (ii) follows since
by Lemma 3.2(c) there are no partially directed cycles and thus the anterior
paths between a and ,8 consist only of undirected edges, so a, f3 E ung by
Lemma 3.7. (iii) follows because if a vertex f3 is anterior to a, but not
an ancestor of a, then by Corollary 3.3 any anterior path starts with an
undirected edge, and the result follows from Lemma 3.7. 0

Lemma 3.9 If 9 is an ancestral graph, and a, f3 are adjacent vertices in 9
then:

a f3 q a antg E antg(a);

(ii) a ,8 q a E antg(j3), ;3 t/:. antg(a);

aB q at/:. antg t/:. antg(a).



A direct consequence of Lemma 3.9 is that an ancestral graph is uniquely
determined by its adjacencies (or 'skeleton') and anterior relations.
formally:

Corollary 3.10 If 91 and 92 aTe two ancestml gmphs with the same veTtex
set V, and adjacencies, then if \:fa, ,8 E V, adjacent in 91 and 92,

Proof: Follows directly from Lemma 3.9. o

Note that this does not hold in general for non-ancestral graphs. See
Figure 5 for an example.

/1
a-c

(i)

/1
a-c

/1
d-f

(ii)

Figure 5: Two pairs of graphs that share the same adjacencies and anterior
relations between adjacent vertices, and yet are not equivalent.

3.3 Bi-Directed Edges in an Ancestral Graph

The following Lemma shows that the ancestor relation induces a partial or­
dering on the bi-directed edges in an ancestral graph.

Lemma 3.11 Let 9 be an ancestml gmph. The Telation -< defined by:

a +-+ ,8 -< 7 +-+ 8 if a, E an(b,8}) and {a,,8}::j:. b,8}

defines a stTict (iTTeflexive) paTtial oTdeT on the bi-diTected edges in 9.

Proof: Transitivity of the relation -< tAiiAUTQ

ancestor relation. Suppose a C011trac11ctlOn
but ::j:. . Either



generality, suppose the former. Since Q; E antb, 8}) and 8 E ant {Q;, it
then follows that either Q; E , or there is a directed cycle containing Q;

and r or 8. In both cases condition (i) in the definition of an ancestral graph
is violated. 0

Note that the relation given by

does not give an ordering on the bi-directed edges as shown by the ancestral
graph in Figure 6. This is significant since it means that in an ancestral
graph it is not possible in general to construct ordered blocks of vertices
such that all bi-directed edges are within blocks and all directed edges are
between vertices in different blocks and are directed in accordance with the
ordering.

ex-!3
t !y-o

Figure 6: An ancestral graph which cannot be arranged in ordered blocks
with bi-directed edges within blocks and edges between blocks directed in
accordance with the ordering. (See text for further discussion.)

3.4 The Pathwise m-separation Criterion

We now extend Pearl's d-separation criterion (see Pearl, 1988), defined orig­
inally for DAGs, to ancestral graphs.

A non-endpoint vertex ( on a path is a collider on the path if the edges
preceding and succeeding ( on the path have an arrowhead at (, i.e. --+ ( f-,

H ( H, H ( ( H. A non-endpoint vertex ( on a path which is not a
collider is a on the path. A path between vertices Q; and in an
anc;est,ral graph 9 is said to be a set Z
with Q;, Z, if

non-(:ollld(~r on is not and

every COIHCH~r on is in



If there is no path m-connecting (); and f3 given Z, then (); and ,8 are said to
be m-separated given Z. Sets X and Yare m-separated given Z, iffor every
pair ();, with (); E X and ,8 E Y, (); and ,8 are m-separated given Z (X, Y, Z
are disjoint sets; X, Yare non-empty). We denote the independence model
resulting from applying the m-separation criterion to 9, by 3m (9) .

This is an extension of Pearl's d-separation criterion to mixed graphs in
that in a DAG 1), a path is d-connecting if and only if it is m-connecting. See
Figure 7(a) for an example. The formulation of this property leads directly
to:

Proposition 3.12 If 9 is an ancestral graph, and 9' is a subgraph with the
same vertex set, then 3m (9) ~ 3m (9').

Proof: This holds because any path in 9' exists in 9. o

Notice that it follows directly from Corollary 3.3, and Lemma 3.2 (b) that
if ~I is a collider on a path 1T" in an ancestral graph 9 then ~I E antg CB) ¢:} r E

angCB). Since the set of m-connecting paths will not change, strengthening
condition (ii) in the definition of m-separation to:

(ii)' every collider on the path is in ang(Z).

will not change the resulting independence model 3m (9). This formulation
is closer to the original definition of d-separation as originally defined for
directed acyclic graphs, since it does not use the anterior relation. The
only change is that the definitions of 'collider' and 'non-collider' have been
extended to allow for edges of the form and +-to (Also see the definition
of 'h-separation' introduced in Verma and Pearl (1990).)

3.4.1 Properties of m-connecting paths

vVe now prove two Lemmas giving properties of m-connecting paths that we
will exploit in Section 3.6.

Lemma 3.13 If 1T" is a path (); and ,B
graph 9 every vertex on 1T" is in ant({();,

Z an an(~esl~rat



" r~
b c_d_e

/+ ~ I
j-g""'--"'h i

~ ~~
Z Y

(a)

x a

I ~~
b c-d
Iii
, i I+ , I
g-h i

~ ~~
Z Y

(b)

a~"
--'c---d

X/
g--
!
i
z

(e)

Figure 7: Example of global Markov properties. (a) An ancestral graph g,
thicker edges form a path m-connecting x and y given {z}; (b) the subgraph
gant({x,y,z}); (c) the augmented graph (Oant({x,y,z}»)a, in which x and y are not
separated by {z}.

Proof: Suppose f is on 7r and is not anterior to 0: or fJ. Then, on each ofthe
subpaths 7r(0:, ~/) and 7rh, fJ), there is at least one edge with an arrowhead
pointing towards f along the subpath. Let rPO:'Y and rP'i(3 be the vertices at
which such arrowheads occur that are closest to ~I on the respective subpaths.
There are now three cases:

If f =1= rP'i(3 then 7r h, rP'Y(3) is an anterior path from f to rP'Y(3' It further
follows from Lemma 3.2(b) and Corollary 3.3 that rP'Y(3 is a collider
on 7r, hence anterior to Z, since 7r is m-connecting given Z. Hence
~I E ant(Z).

If ~I =1= then by a symmetric argument to the previous case it follows
that ~I is anterior to and is a collider on 7r and thus anterior
to Z. Thus in this case, ~I E ant (Z) .

If ,3= then ~I is a collider on 7r, hence anterior to Z.

o

Lemma 3.14 Let g
}T, Z

tt

Z g.



Figure 8: Illustration of Lemma 3.14: (a) a path on which every vertex is an
ancestor of a or ,8; (b) a path m-connecting a and (3 given 0.

Proof: Let JL* be a path which contains the minimum number of colliders
of any path between some vertex a* E X and some vertex (3* E Y on which no
non-collider is in Z and every collider is in ant (X uY u Z). JL * is guaranteed
to exist since the path JL described in the Lemma has this form. In order
to show that JL* m-connects a* and ,8* given Z it is sufficient to show that
every collider on JL* is in ant(Z).

Suppose for a contradiction that there is a collider I on JL* and ~f tf.
ant(Z). By construction I E ant(X U Y U Z), so either ~f E ant(X) \ ant(Z)
or I E ant(Y) \ ant(Z). Suppose the former, then there is a directed path
7r from I to some vertex a' EX. Let <5 be the vertex closest to (3* on
J.L* which is also on 7r. By construction the paths J.L*(<5, (3*) and 7r(<5,0:') do
not intersect except at <5. Hence concatenating these subpaths forms a path
which satisfies the conditions on JL* but has fewer colliders than JL*, which
is a contradiction. The case where I E ant(Y) \ ant(Z) is symmetric. 0

Corollary 3.15 In an ancestral graph g, there is a path JL between a and
(3 on which no non-collider is in a set Z (a, ,8 tf. Z) and every collider is in
ant ({a, ,8} U Z) if and only if there is a path m-connecting a and ,8 given Z
in g.

Proof: One direction is immediate and the other is a special case of Lemma
3.14withX {a},Y {;3}. 0

This Corollary shows that condition (ii) in the definition of m-separation
can be weakened to:

every COllld.~r on is in

7



3.4.2 Formulation via sequences

Koster (2000) shows that if the separation criterion is applied to sequences of
edges (which may include repetitions of the same edge) as opposed to paths,
then some simplification is possible. Under this formulation vertices a and
,8 in a mixed graph 9 are said to be m-connecting given a set Z if there is a
sequence -5 for which

(i)* every non-collider on 5 is not in Z, and

(ii)* every collider on -5 is in Z.

The definitions of collider and non-collider remain unchanged, but are applied
to edges occurring in sequences, so a -f ,8 +- a forms a collider. Koster
(2000) proves that this criterion is identical to the m-separation criterion
defined here for paths: the proof is based on the fact that there is a directed
path from a collider ~I to a vertex ( E Z if and only if there is a sequence of
the form, -f ... -f ( +- ... +- ,.

vVe do not make use of this criterion in this paper, as paths, rather than
sequences, are fundamental to our main construction (see Section 4.2.3).

3.5 The Augmentation m*-separation Criterion

The global Markov property for DAGs may be formulated via separation
in an undirected graph, obtained from the original DAG by first forming a
subgraph and then adding undirected edges between non-adjacent vertices
that share a common child, a process known as 'moralizing'. (See Lauritzen
(1996), p.47 for details.) In this subsection we formulate the global Markov
property for ancestral mixed graphs in this way. In the next subsection the
resulting independence model is shown to be equivalent to that obtained via
m-separation. It is useful to have two formulations of the Markov property
because some proofs are simpler using one while other proofs are simpler
using the other.

3.5.1 The augmented graph

IS a coillcler
if IS a

an ancestral 9 are said to
9 on which every vertex eXiC€I>L

a coiiza(:J'



such a path as a 'pure collision path'.) Note that if there is a single edge
between a and ,8 in the graph then a and,8 are (vacuously) collider connected.

The augmented graph, denoted (Q)a, derived from the mixed graph 9 is
an undirected graph with the same vertex set as 9 such that

/- 0 in (Q)a {::? / and 0 are collider connected in g.

3.5.2 Definition of m*-separation

Sets X, Y and Z are said to be m*-separated if X and Yare separated by Z
in (Qant(XuYUZ))a (X, Y, Z are disjoint sets; X, Yare non-empty). Otherwise
X and Yare said to be m*-connected given Z. The resulting independence
model is denoted by Jm*(Q). See Figure 7(b),(c) for an example.

When applied to DAGs, or DGs, the augmentation criterion presented
here is equivalent to the Lauritzen-Wermuth-Frydenberg moralization crite­
rion. (See Section 9.4 for discussion of chain graphs.)

3.5.3 Minimal m*-conneeting paths

If there is an edge /- 0 in (Q)a, but there is no edge between ~( and 0 in g,
then the edge is said to be augmented. A path connecting x and y given Z
is said to be minimal if there is no other such path which connects x and y
given Z but has fewer edges than JL.

We now prove a property of minimal paths that is used in the next section:

Lemma 3.16 Let 9 be an ancestral graph. If JL is a minimal path connect­
ing a and ,8 given Z in (Q)a, then a collideT path in 9 associated with an
augmented edge / 0 on JL has no veTtex in common with JL, OT any collider'
path associated with anotha augmented edge on JL, except possibly / OT O.

Proof: Suppose that ~(- 0 and E - rP are two augmented edges, occurring
in that order on JL, and that the associated collider paths have in common a
vertex which is not an endpoint of these paths. Then / and rP are adjacent
in (m a . Thus a shorter path may be constructed by concatenating JL(a,

- c/J and JL(c/J, , which is a contradiction. Likewise suppose that K is a
vertex on a collider path between ~( and 6 which also occurs on JL. K either
occurs or on K r5
III

JL(r5,



3.6 Equivalence of m-separation and m*-separation

Lemma 3.17 In an ancestml gmph 9 suppose that p, is a path which m­
connects 0: and p given Z. The sequence of non-colliders on p, forms a path
connecting 0: and in )a.

Proof: By Lemma 3.13 all the vertices on p, are in gant({a,p}UZ). Suppose that
Wi and Wi+I (1:::; i:::; k -1) are the successive non-colliders on p,. The subpath
P,(Wi, Wi+I) consists entirely of colliders, hence Wi and WHI are adjacent in
(9ant({a,p}UZ))a. Similarly WI and Wk are adjacent to 0: and /3 respectively in
(9ant({a,p}UZ))a. 0

Theorem 3.18 For an ancestml gmph g, 'lm*(9) = 'lm(9).

We break the proof into two pieces:

Proof: 'lm* (9) ~ 'lm(9)
We proceed by showing that if (X, Y I Z) ~ 'lm(9) then (X, Y I Z) ~ 'lm* (9).
If (X, Y I Z) ~ 'lm(9) then there are vertices 0: E X, PE Y such that there
is an m-connecting path p, between 0: and p given Z in g. By Lemma 3.17
the non-colliders on p, form a path p,* connecting 0: and ,8 in (9ant(XuYUZ))a.

Since p, is m-connecting, no non-collider on p, is in Z hence no vertex on p,*
is in Z. Thus (X, Y I Z) ~ 'lm* (9). 0

Proof: 'lm (9) ~ 'lm* (9)
We show that if (X, Y I Z) ~ 'lm* (9) then (X, Y I Z) ~ 'lm(9). If (X, Y I
Z) ~ 'lm* (9) then there are vertices 0: EX, ,8 E Y such that there is a mini­
mal path 1t' connecting 0: and /3 in (9ant(XuYUZ))a on which no vertex is in Z.
Our strategy is to replace each augmented edge on 1i with a corresponding
collider path in gant(XuYUZ) and replace the other edges on 1t' with the corre­
sponding edge in g. It follows from Lemma 3.16 that the resulting sequence
of edges forms a path from 0: to in g, which we denote v. Further, any
non-collider on v is a vertex on 1t' and hence not in Z. Finally, since all ver­
tices in v are in it follows that every collider is in ant(X Y Z).
Thus by Lemma 3.14 there are vertices E and E Y such that and

are given Z g. Thus . Y ~ 0



3.7 l\1aximal Ancestral Graphs

Independence models described by DAGs and undirected graphs satisfy pair­
wise Markov properties with respect to these graphs, hence every missing
edge corresponds to a conditional independence (see Lauritzen (1996), p.32).
This is not true in general for an arbitrary ancestral graph, as shown by the
graph in Figure 9 (a).

(b)

Figure 9: (a) The simplest example of a non-maximal ancestral graph: r
and 6 are not adjacent, but are m-connected given every subset of {a, ,B},
hence Jrn (9) = 0; (b) an extension of the graph in (a) with the same (trivial)
independence model.

This motivates the following definition: an ancestral graph 9 is said to be
maximal if for every pair of vertices a, ,8 if a and ,B are not adjacent in 9 then
there is a set Z (a, (3 t/:. Z), such that ({a},{,B} I Z) E Jrn (9). Thus a graph
is maximal if every missing edge corresponds to at least one independence in
the corresponding independence model.

Proposition 3.19 If 9 is an undirected graph, or a directed acyclic graph
then 9 is max·imal.

Proof: Follows directly from the existence of pairwise Markov properties for
DAGs and undirected graphs. 0

The use of the term 'maximal' is motivated by the following:

Proposition 3.20 If 9 = (V, E) is a maximal ancestral graph, and 9 is a
subgraph of g* = (V, ), then Jrn (9) = Jrn (9*) implies 9 = g*.

Proof: If some pair 0:, are adjacent in g* but not g, then in g*, a and
are m-connected by any subset of {a, . Hence Jm (9) 1= Jm (9*. 0

sense no addi-
independence

converse.



Theorem 5.1 If 9 is an ancestral graph then there exists a unique maximal
ancestral graph 9 formed by adding +-+ edges to 9 such that :Jm(9) = :Jm((J).

We postpone the proof of this Theorem until Section 5.1, since it fol­
lows directly from another result. In Corollary 5.3 we show that a maximal
ancestral graph satisfies the following:

Pairwise Markov property

If there is no edge between a and j3 in 9 then

3.8 Complete Ancestral Graphs

An ancestral graph is complete if there is an edge between every pair of
distinct vertices. A graph is said to be transitive if a -+ j3 -+ ~f implies
a -+ i. Andersson et al. (1995, 1997), and Andersson and Perlman (1998)
study properties of independence models based on transitive DAGs.

Lemma 3.21 If 9 is a complete ancestral graph then

(i) 9 is transitive;

(ii) the induced subgraph gung is a complete undirected graph;

(iii) if a E V \ ung then antg(a) = pag(a) U {a};

(iv) if a E ung then antg(a) = ung.

Proof: If a -+ ,8 -+ ~f in 9 then a ~f since if a - ~f, a f- ',/, or a +-+ ~f then
9 would not be ancestral, establishing (i). If a, ,8 E ung then by Lemma 3.7,
a - which establishes (ii). Suppose a E V ung, ,8 E antg(a). If j3 ung
then -+ a, by Lemma .3.7; if E V ung then E ang(a) and so ,8 -+ a
by . Hence (iii) holds. follows directly from 0

22



4 Marginalizing and Conditioning

In this section we first introduce marginalizing and conditioning for an inde­
pendence model. We then define a graphical transformation of an ancestral
graph. \Ve show that the independence model corresponding to the trans­
formed graph is the independence model obtained by marginalizing and con­
ditioning the independence model of the original graph. In the remaining
subsections we derive several useful consequences.

4.1 Marginalizing and Conditioning Independence
Models (J[~)

An independence model J with vertex set V after marginalizing out a subset
L, is simply the subset of triples which do not involve any vertices in L. More
formally we define:

JL == {(X, Y I Z) I (X, Y I Z) E J; (X u Y u Z) n L = 0}.
If J contains the independence relations present in a distribution P, then

J[L contains the subset of independence relations remaining after marginal­
izing out the 'Latent' variables in L; see Theorem 7.1. (Note the distinct
uses of the vertical bar in (-, . I .) and {- I .}.)

An independence model J with vertex set V after conditioning on a subset
S is the set of triples defined as follows:

J[S == {(X, Y I Z) I (X, Y I Z US) E J; (X U Y U Z) n S = 0}.
Thus if J contains the independence relations present in a distribution P then
J[S constitutes the subset of independencies holding among the remaining
variables after conditioning on S; see Theorem 7.1. (Note that the set S
is suppressed in the conditioning set in the independence relations in the
resulting independence model.) The letter S is used because Selection effects
represent one context in which conditioning may occur.

Combining these definitions we obtain:

== { ,Y Z E J; (X YU

Proposition 4.1 an m(Lepenaej~ce J V contazr,mg azs1,nnc



4.1.1 Example

Consider the following independence model:

J* {({a, x}, {b,y} 1{t}), ({a,x}, {b} 10),({b,y},{a} 10), ({a,b},{t} 10)}.

In fact, J* C Jm('D), where 1) is the DAG in Figure lO(i). In this case:

J*[~t} = {({a,x}, {b} 10), ({b,y}, {a} 10)}, J*[~t} = {({a,x}, {b,y} 10)}.

4.2 Marginalizing and Conditioning for Ancestral Graphs

Given an ancestral graph 9 with vertex set V, for arbitrary disjoint sets S,
L (both possibly empty) we now define a transformation:

The main result of this section will be:

Theorem 4.18 If 9 is an ancestral graph over V, and SUL c V, then

(where AuE denotes the disjoint union of A and E).

In words, the independence model corresponding to the transformed graph
is the independence model obtained by marginalizing and conditioning the
independence model of the original graph.

Though we define this transformation for any ancestral graph g, our pri­
mary motivation is the case in which 9 is a DAG, representing some data
generating process that is partially observed (corresponding to marginaliza-

and selection may be present (corresponding to condition-
Wermuth for further discussion of aalja-i~ener3Ltmlg

processes, marglnallzlllg and CODclltlOn.mg.



4.2.1 Definition of g[~

Graph Q[~ has vertex set V \ (SUL), and edges specified as follows:

If a. are S.t. \/Z, with Z <;;;; V \ (SULU{a,

and

a E antg({/3} US); f3 E antg({a} U S)
a'i antg( {f3} US); f3 E antg({a} U S)
a E antg( {f3} US); ,B'i antg({a} U S)
a 'i antg( {,B} uS); f3 'i antg({a} U S)

then

a-,B

af-f3
a -+ ,B

a+-+f3

in g[~.

In words, g[~ is a graph containing the vertices that are not in S or L. Two
vertices a, ,B are adjacent in g[~ if a and f3 are m-connected in 9 given any
subset that contains all vertices in S and no vertices in L. If a and f3 are
adjacent in g[~ then there is an arrowhead at a if and only if a is not anterior
to either ,B or S in g, and a tail otherwise.

Note that if 9 is not maximal then g[: 1= g. (See Corollary 5.2.) vVe will
show in Corollary 4.19 that g[~ is always maximal.

4.2.2 Examples

Consider the DAG, D, shown in Figure 10(i). The independence model
Jm(D) ::::> J*, given in Section 4.1.1. Suppose that we set L {t}, S = 0.

(i)

a b

! !
x_y

(ii)

a

!
x

(iii)

b

!
y

Figure 10: A simple DAG model, D;
text for further explanation.

the graph D[~t}; the graph

will
definition vprtlPI"" that are aaJlaCI'~nt



in the original graph will also be adjacent in the transformed graph, if they
are present in the new graph, since adjacent vertices are m-connected given
any subset of the remaining vertices. Hence the pairs (a, and (b, y) will
be adjacent in V[~t}' In addition, x and y will be adjacent since any set
m-separating x and y in V contains t, hence there is no set Z ~ {a, b} such
that {{x},{y} I Z) E Jm(V). Since {{a}, {b,y} 10),{{b},{a,x} 10) E Jm(V)
there are no other adjacencies. It remains to determine the type of these
three edges in V[~t}' Since x rJ. antv(y), and y rJ. antv(x), the edge between
x and y is of the form x +-+ y. Similarly the other edges are a --+ x and
b --+ y. Thus the graph V[~t} is as shown in Figure lO(ii). Observe that

J* [~t} C Jm(V[~t})'

Now suppose that L 0, S = {t}. Since {{a,x},{b,y} 1 {t}) E Jm(V),
it follows that (a, x) and (b, y) are the only pairs of adjacent vertices present
in the transformed graph V[~t}, hence this graph takes the form shown in
Figure lO(iii). Note that J*[~t} C Jm(V[~t}).

Another example of this transformation is given in Figure 11, with a more
complex DAG V'. Note the edge between a and c that is present in V'[{{;} I }'

l' 2

(i)

/~~c
a-\..s ~d

(iii)

11--12

I"'/\
a ~d

(ii)

/b----..
~c,

a "d

(iv)

Figure 11:

the
the graph the graph v'r0

l{lj



4.2.3 Adjacencies in g[~ and inducing paths

A path 7r between a and 13 on which every collideI' is an ancestor of {a, ,8} uS
and every non-collider is in L, is called an inducing path with respect to Sand
L. This is a generalization of the definition introduced by Verma and Pearl
(1990). An inducing path with respect to S = 0, L = 0 is called primitive.
Note that if a,j3 E V \ (S U L), and a,,8 are adjacent in 9 then the edge
joining a and 13 is (trivially) an inducing path w.r.t. Sand L in g.

In Figure 10(i) the path x f-- t -t y forms an inducing path w.r.t. S = 0,
L = {t}; in Figure 11 (i) the path a -t II -t b f-- 12 -t c forms an inducing
path w.r.t. S = {s}, L = {h,12}; in Figure 9(a), "( +-t P +-t a +-t 6 forms
a primitive inducing path between I and 6. (Other inducing paths are also
present in these graphs.)

Theorem 4.2 If 9 is an ancestral graph, with vertex set V = OUSUL, and
a, ,8 E 0 then the following six conditions are equivalent:

(i) There is an edge between a and ,8 in g[~.

(ii) There is an inducing path between a and 13 w. r. t. Sand L in g.

(iii) There is a path between a and ,8 in (gant({a,,B}US))a on which every
vertex, except the endpoints, is in L.

(iv) The vertices in ant({a, j3} US) that are not in L U{a, j3} do not m­
separate a and ,8 in g:

({a}, {j3}1 ant ({a, j3}US) \ (LU{a, j3})) ~ JmW)·

(v) VZ,Z r;; V\ (SULU{a,j3}), ({a},{8}IZUS) ~ JmW)·

(vi) VZ,Zr;; V\(SULU{a,j3}),\{a},{8}IZ) ~ JmW)[~,

Proof: Let Z* ant({a, (L U {a, /J}). By Proposition 2.2(i)

ant({a, Z* ant({a, U(ant({a, U (L {a, ))

1 so



(iii)¢:}(iv) Since, by Theorem 3.18, Jm* (Q) Jm(Q), (iv) holds if and only ifthere
is a path p, in on which no vertex is in Z*, and hence by

every vertex is in T*. Further, by (t), gantt{a"B}UZ*) =
hence by the definition of ,p, satisfies the conditions given in (iii).

(ii)=:>(iv) If there is an inducing path 1r in 9 w.r.t. Sand L, then no non-collider
on 1r is in Z*, since Z* nL = 0, and any collider on 1r is in an({a, p} U

S) ~ ant({a"B} U S) = ant({a,;3} U Z*) by (t). Hence by Corollary
3.15 there is a path 1r* which m-connects a and p given Z* in 9 as
required.

(iv)=:>(ii) Let v be a path which m-connects a and p given Z*. By Lemma 3.13
and (t), every vertex on v is in ant({a,p}US), hence by Lemma 3.2(b)
and Corollary 3.3, every collider is in an({a, ,B}US). Every non-collider
is in ant ({a, ,B} U S) \ Z* ~ L U {a, ,B}, so every non-collider is in L.
Hence v is an inducing path w.r.t. Sand L in g.

(iii)=:>(v) Every edge present in (Qant({a,,B}US))a is also present in (Qant({a,,B}UZUS))a.

The implication then follows since every non-endpoint vertex on the
path is in L.

(v)=:>(iv) This follows trivially taking Z = Z* \ S.

(v)¢:}(i) Definition of g[~.

(v)¢:} (vi) Definition of Jm(Q)[~. o

An important consequence of condition (iv) in this Theorem is that a
single test of m-separation in 9 is sufficient to determine whether or not a
given adjacency is present in g[~; it is not necessary to test every subset of
V (SUL U {a, . Likewise properties (ii) and (iii) provide conditions that
can be tested in polynomial time.

4.2.4 Primitive inducing paths and maximality

Corollary 4.3 If 9 is an ancestral graph, there is no set Z, (a, ¢:. Z),
that Jm (Q) if and only if there is a 'inducing

in g.

Proof: S = L 0.



Corollary 4.4 Every non-maximal ancestral graph contains a primitive in­
ducing path between a pair of non-adjacent vertices.

Proof: Immediate by the definition of maximality and Corollary 4.3. 0

Primitive inducing paths with more than one edge take a very special
form, as described in the next Lemma, and illustrated by the inducing path
i +-+ ,B +-+ 0' +-+ 6 in Figure 9(a).

Lemma 4.5 Let 9 be an ancestral graph. If 7r is a primitive inducing path
between 0' and (3 in 9, and 7r contains more than one edge, then:

(i) every non-endpoint vertex on 7r is a collider and in antg({O'"B})i

(ii) 0' rj. antg((3) and (3 rj. antg(O')i

(iii) every edge on 7r is bi-directed.

Proof: (i) is a direct consequence of the definition of a primitive inducing
path. Consider the vertex i which is adjacent to 0' on 7r. By (i), i is a collider
on 7r, so i E spg(O') u chg(O'), so i rj. antg(O') as 9 is ancestraL Hence by (i)
i E antg ((3). If ,B E antg (0') then i E antg (0'), but this is a contradiction.
Thus (3 rj. antg(O'). By a similar argument 0' rj. antgCB), establishing (ii). (iii)
follows directly from (i) and (ii), since 9 is ancestraL 0

Lemma 4.5 (ii) has the following consequence:

Corollary 4.6 In a maximal ancestral graph 9, if there is a primitive in­
ducing path between 0' and /3 containing more than one edge, then there is
an edge 0' ,B in g.

Proof: Since 9 is maximal, by Corollary 4.3,0' and ,B are adjacent in 9. By
Lemma 4.5(ii), 0' rj. antg((3) and ,B rj. antg(O'), hence by Lemma 3.9, it follows
that 0' +-+ in 9. 0

that if 9 is a maximal ancestral graph and 9' is a subgraph formed
by removing an undirected or directed from 9 then 9' is also maximal.



4.2.5 Anterior relations in g[~

The next Lemma characterizes the vertices anterior to a in g[~.

Lemma 4.7 For an ancestral graph 9 with vertex set V = OUSUL, if a E 0
then

antg(O') \ (antg(S)UL) ~ ant (a) ~ antg({O'} US) \ (SUL).

In words, if a, f3 are in g[~ and a is anterior to ,8 but not S in g, then a
is also anterior to f3 in g[~. Conversely, if a is anterior to f3 in g[~ then a is
anterior to either f3 or S in g.

Proof: Let fL be an anterior path from a vertex f3 E antg(a) \ (L U antg (S) )
to a in g. Note that no vertex on fL is in S. Consider the subsequence
(,8 == Wm , ... , Wi,"" WI == a) of vertices on fL that are in 1/ \ (S U L). Now
the subpath fL(Wi+l' Wi) is an anterior path on which every vertex except
the endpoints is in L. Hence Wi and Wi+! are adjacent in g[~. Further
since Wi+! E ant9(wi) it follows that either W'i+l - Wi or Wi+! -t Wi, hence
f3==wm E antgU: (a), as required.

To prove the second assertion, let v {9n, ... ,91 == a) be an anterior
path from a vertex 9n E antg[z(a) to a in g[~. For 1 ::; i < n, either

9i+l - 9i or 9i+l -t 9i on v. By definition of g[~, in either case 9i+l E

antg({9d U S) \ (S U L). Thus 9n E antg({a} U S) \ (S U L). 0

Taking S = 0 in Lemma 4.7 we obtain the following:

Corollary 4.8 In an ancestral graph 9 = (V, E) if a E V \ L then antg(a) \
L ant rr0 (a).

'>ILL

4.2.6 The undirected subgraph of g[~

Lemma 4.9 If 9 is an ancestral graph ve-rtex set V OUSUL, then

(ung U C un

d kf'WH,P any vertex



anterior to 5 in 9 will be in the undirected component of g[~ if present in
this graph.

Proof: Suppose for a contradiction that 0: E (ung U antg (5)) \ (5 u L), but
0: 1.: unglf' Hence there is a vertex j3 such that either j3 +-7 0: or /3 -+ 0: in

g[~. In both cases 0: 1.: antg( {j3} U 5). Thus 0: 1.: antg(5). Since 0: and j3
are adjacent in Q[~ by Theorem 4.2(ii) there is an inducing path 1r between
0: and j3 W.Lt. 5 and L, hence every vertex on 1r is in antg({o:, j3} U 5). If
there are no colliders on 1r then since 0: E ung, 1r is an anterior path from 0:

to j3 so 0: E antg(,B), which is a contradiction. If there is a collider on 1r then
let r be the collider on 1r closest to 0:. Now 1r(0:, ~t) is an anterior path from
0: to r so 0: E antg(r) but r 1.: ung, hence by Lemma 3.8(ii), ~t 1.: antg(o:).
Thus r E antg( {j3} U 5), and thus 0: E antg({,B} U 5), again a contradiction.

o

Corollary 4.10 If 9 is an ancestral graph with V = Ou5UL and 0: E 0
then

Thus the vertices anterior to 0: E 9 that are also in g[~ either remain
anterior to 0: E 9 [~, or are in un 9[f (or both).

Proof:

(antg(o:)) \ (5 U L)

(*)

c (antg(0:) \ (antg (5) U L) ) U(antg (5) \ (5 U L) )

C antgrs (0:) U ung[s
cL L

The step marked (*) follows from Lemmas 4.7 and 4.9. o

Lemma 4.11 In an ancestral graph g, if 0: E antg[f (/3) and 0: 1.: ung[f then

0: E ang(,B), and 0: 1.: antg(5).

Proof: If 0:

ung U antg
antg
o:E

1.: ung[f, but 0: E V \ (5 L) then by Lemma 4.9,0: rt
. Since 0: E ant grS it follows from Lemma 4.7 that 0: E

.L

. So 0: E antg . Further, since 0: rt ung, by Lemma 3.8(iii),

if in 9 c~ is anterior to
is an ancestor in g.

is an arrowhead at 0:



4.2.7 9[~ is an ancestral graph

Theorem 4.12 If 9 is an arbitrary ancestral graph, with vertex set V
OUSUL, then g[~ is an ancestral graph.

Proof: Clearly 9[~ is a mixed graph. Suppose for a contradiction that

a E ant"rs(pa,,[s(a)usp,,[s(a)). Suppose a E ant",s(,8) with ,8 E pagrs(a)U
" lL " L " L " lL cL

sp9[I(a). Then by Lemma 4.7, a E antg({,8}uS). However if,8 E pa9[I(a)u

sp g[I (a) then a t/:. antg (,8 U S) by definition of 9[~, which is a contradiction.

Hence g[~ satisfies condition (i) for an ancestral graph.

Now suppose that ne,,[s(a) 1= 0. Let ,8 E ne"rs(a). Then bv the definition
"L ,,~.

of 9[~, a E antg({,8} U S) and,8 E antg({a} uS). Thus either a E antg(S)

or, by Lemma 3.8(ii), a E ung. It follows by Lemma 4.9 that a E lm glI ,

hence pa"rs(a)Usp",s(a) = 0. So g[~ satisfies condition (ii) for an ancestral
"lL "lL

graph. 0

vVe will show in Section 4.2.10 that 9[~ is a maximal ancestral graph.

4.2.8 Introduction of undirected and hi-directed edges

As stated earlier, we are particularly interested in considering the transfor­
mation 9 M 9[~ in the case where 9 is a DAG, and hence contains no
bi-directed or undirected edges. The following results show that the intro­
duction of undirected edges is naturally associated with conditioning, while
bi-directed are associated with marginalizing.

Proposition 4.13 If 9 is an ancestral graph which contains no undirected
edges, then neither does g[~.

Proof: If a in g[~ then, by construction, a antg E antg
Hence by Lemma 3.8(ii) there is a path composed of undirected edges which
joins a and ,8 in g, which is a contradiction. 0

In particular, if we begin with a DAG, then undirected edges
if S 1= it LVLl'v''''

will present if L 1=

only
the next



Proposition 4.14 if 9 is an ancestral graph which contains no bi-directed
edges then neither does 9[:.
Proof: If 0 f-t ,8 in g[: then 0 tJ; antg({p}US) and ,8 tJ; antg({o}uS). Since
there are no bi-directed edges in 9 it follows that 0 and ,8 are not adjacent
in g. Since L 0, it further follows that any inducing path has the form
o -t a +- where a E antg(S), contradicting 0, p tJ; antg(S). 0

4.2.9 The independence model :Jm(g[~)

The following Lemmas and Corollary are required to prove Theorem 4.18.

Lemma 4.15 If9 is an ancestral graph with V = OUSUL, and ,8 E pag[i (o)u
SPg[i(o) then 0 is not anterior to any vertex on an inducing path (w.r.t. S
and L) between 0 and p in g.

Proof: If p E pagri (0) Usp gri (0), then 0 rf. un g[i' It then follows by Lemma
4.9 that 0 tJ; ung, and by construction of g[~ that 0 tJ; ant0( {p} US). A
vertex r on an inducing path between 0 and ,8 is in anto( {o, ,8} uS). If
o E antgh) then by Lemma 3.8(ii) ~( tJ; antg(o), since 0 tJ; ung. Thus
~( E antg( {p} U S) but then 0 E antg({p} uS), which is a contradiction. 0

Corollary 4.16 If 0 f-t ,8 or 0 +- ,8 in g[~ and (0, rPr, ... , cPk, ,8) zs an
inducing path (w. r. t. Sand L) in 9 then rPr E pag(0) U SPg (0) .

Proof: By Lemma 4.15 0 tJ; antg(rPr), hence rPr E pag(o) U SPg(o). 0

The next Lemma forms the core of the proof of Theorem 4.18.

Lemma 4.17 If 9 is an ancestral graph with V = OUSUL, ZU{a, ,8} <;;; 0
then the following are equivalent:

(i) There is an edge between a and ,8 in (( g[~)ant ({n.t3}UZ)r·
(ii) There is a path between a and p in

enltvo'ints. zs L.

a
on which every

a m-connects a

Z



a f3

!~y
(iii) ,

a 13

\;x:1~f3
t )2-1

\/
(ii) I,

a f3

~
(iv) ,

Figure 12: Example of Lemma 4.17: (i) an ancestral graph g; (ii)

the augmented graph (Qantg({a,l3}uZUS))a; (iii) the graph g[~; (iv) the aug­

mented graph (( gG)antg[~({a,I3}UZ))a; (where Z = {O, S = {s} and L

{h, 12 , 13 , 14 , 15})' See text for further explanation.

Figure 12 gives an example of this Lemma, continued below, to illustrate
the constructions used in two of the following proofs.

Proof:

(i)=?(ii) By (i) there is a path 1T' between 0: and ,8 in g[~ on which every non­
endpoint vertex is a collider and an ancestor of Z U {o:, p} in g[~. Let
the vertices on 1T' be denoted by (wo, ... , ,(0: WO, P= wn+d.
By Lemma 4.7 Wi E antg({o:,p} U Z uS). By Theorem 4.2 there
is a path Vi between Wi and in on which every
non-collider is in L. The path Vi exists in as it is a
supergraph of . Let.5 be the sequence formed

concatenating the sequences of vertices on each of the paths Vi.

same vertex may occur more once in

0:.



sufficient to show that for 0 ::::; j < r +1, if 1= then In

_ m'"\lU,fJI~L_~u )a. Suppose 1= , there are now two cases:

(a) and both occur on the same path Vi. In this case and
are connected in (9ant({a,p}UZUS))a by the augmented edge

corresponding to the collideI' path Vi(1/;j,

(b) 'l/Jj and occur on different paths, Vij and Vij+l' Consider the
subsequence 5Cl/Jj, , denoted by (4)0,4>1,,''' 4>q, 4>q+1), with
4>0 = ,4>q+1 . For 1::::; k::::; q any vertex 4>k is either on Vi or is
an endpoint Wi of Vi with 'i j < i ::::; ij+l' In the former case since 1/;j
and 1/;j+l are consecutive non-colliders in 5, 4>k is a collideI' on Vi.

In the latter case by Corollary 4.16, 4>k-1, 4>k+1 E pag(wi) USPg(Wi)

since Wi is a collideI' on 1r. Thus for 1 ::::; k < q, 4>k B 4>k+1, more­
over 1/;j -+ 4>1 or 1/;j B 4>1, and 4>q t-7jJj+1 or 4>q B 'l/Jj+1' Hence
'l/Jj and 1/;j+1 are collideI' connected in gant({a,p}UZUS), and conse­
quently adjacent in (9ant( {a,p}UZUS))a. 0

Applying the construction in the previous proof to the example in Figure
12, we have 1r (a, (, (3) = (wo, WI, W2) in Q[~, hence n = 1. Further, Vo =
(a, 'Y, ll' b, l4, () and VI = ((, l4, l2, h, l3, l5, ,8), hence 5 (a, 'Y, lI, l2, l4, (, l4, l2,
h, l3, l5, (3). Now, (1/;0, ... ,1/;9) = (a, h, b, l4, l4, l2, ll, l3, l5, ,8), so r = 8. For
j 1= 3, case (a) applies since and occur on the same path Vi; for j = 3,
't/Jj =

(ii)q.(iii) This follows from Proposition 2.2 together with the definition and
equivalence of m-separation and m*-separation (Theorem 3.18).

(iii):::}(i) Let Z* antg({a, (3} U Z US) \ (L U {a, ,B}), and let 1r be a path which
m-connects a and ,B given Z* in g. By Lemma 3.13 every non-collider
on 1r is in antg({a"B} U Z*) = ant9({a,f3} U Z U S) by Propositions
2.1(iii) and 2.2(i). Every non-collider on 1r is in L and every collideI' is
an ancestor of Z*. Let , ... , denote the sequence of colliders on
1r that are not in antg , and let a and For 1 ::::; i ::::; t
let the first vertex in 0 on a shortest directed path from to a
vertex (i E Z* antg C antg (Z (antg , denoted
Vi' Again = a, Denote
t. a t ("()Tl"tl'l1('tprl

= o. so = a;



i(k+ 1) isthegreatestj > 'i(k) with , ... ,<pj} ~ antg({<pi(k), }).

Note that if < t then i(k + is guaranteed to exist since

} ).

In addition, the vertices in s are distinct. Let s be such that i(s 1)
t + 1, so (3.

We now show that there is a path connecting <Pi(k) and in
(Qantg( {¢iCk),¢iCk+l)}US)t on which every vertex except the endpoints is in
L: <Pi(k) and 'l/Ji(k) are connected by the path corresponding to Vi(k) in
(Qantg({¢iCk),¢iCk+l)}US)t, and likewise <Pi(Hl) and 'l/Ji(k+l) are connected by
the path corresponding to Vi(k+1)' In addition, excepting the endpoints
<Pi(k) and <Pi(k+1)' every vertex on Vi(k) and Vi(k+l) is in L. By construc­
tion, every collideI' on 1r(¢i(k),'l/Ji(k+1») is either in antg({<pi(k),<Pi(k+l)})

or antg(S). Further, every non-collider r on 1r(¢i(k) , 'tPi(k+l)) is ei­
ther anterior to ¢j (i(k) ~ j ~ i(k + 1)) or is anterior to a col­
lideI' that is in antg(S). Thus every vertex on 1r('l/Ji(k) , ¢i(k+1») is in
antg( {<Pi(k) , <Pi(k+l)} uS), so this path exists in Qantg( {¢iCk),¢iCk+l)}US). The
sequence of non-colliders on 1r('l/Ji(k) , ¢i(Hl»)' all of which are in L, con­
nect ¢i(k) and in (Qantg({¢iCk),¢iCk+l)}US)t. It now follows from
Theorem 4.2 (iii)9(i) that <Pi(k) and <Pi(Hl) are adjacent in Q[~.

Next we show that <Po -t <Pi(l) or <Po +-+ <Pi(l) , <Pi(s) +- or
<Pi(s) +-+ and 1 ~ k < S, <Pi(k) +-+ in Q[~, from which
it follows that 0: and ,8 are collideI' connected as required. By con­
struction {<Pi(k-l),"" <Pi(k)} ~ antg ({<Pi(k-l)' <Pi(k)} ), hence if <Pi(k) E

antg ({<Pi(k-l)}) then {<Pi(k-l), ... , <Pi(k) , <Pi(k)+d ~ antg ({<Pi(k-l), }),

and thus i (k) is not the greatest j such that

, ... , <Pj} ~ antg( {<Pi(k-l) , <Pj}).

}), (1 ~ k ~ s). Further, since

} ~ antg

Thus

if E then

1r
J ::::::



but in that case is not the last such vertex after in t, which is
a contradiction. By construction, E antg ) for 1 :::; k :::; s, and

1: antg(S), so 1: antg(S). We have now shown that 1:
antg({<Pi(k-l), } US), for 1 :::; k :::; s. The required orientations
now follow from the definition of g[~.

Finally, since {<Pi(l)"'" } ~ antg(Z U {a, ,8}) \ (antg(S) U L),

it follows by Lemma 4.7 that {<Pi(l)"'" <Pi(s)} ~ ant gtt (Z U {a, p}).

Hence every vertex in the sequence.5 occurs in (g[~)antgrs({a,p}uz), and
'L

thus a and 1'3 are collider connected in this graph, as required. 0

vVe now apply the construction in the previous proof to the example
in Figure 12. The path 1r = (a, r, h, l3, l5, 1'3) m-connects a and 1'3 given
Z* antg({a, p} U Z U S) \ (L U {a, p}) {r, 6, s, (}. It follows that
('l/Jo, 'l/Jl, 'l/J2, 'l/J3) = (a, ll, l5, 1'3), so t 2; t = (<Po, <Pl' <P2' <P3) = (a, (, 6, ,8), Vl =
(ll' l2, l4, (), and V2 = (l5,6). It then follows that .5 = (<Pi(O) , <Pi(l) , <Pi(2))
(a, (, 1'3), so s= 1. For k = 0,1 the graph (Yantg({¢i(k)l¢i(k+l)}US))a is the graph
shown in Figure 12(ii). Finally, note that t does not constitute a collider
path between a and ,8 in 9[~, though the subsequence .5 does, as proved.

We are now ready to prove the main result of this section:

Theorem 4.18 If 9 is an ancestral graph over V, and SUL c V, then

Proof: Let XuYuZ ~ O. We now argue as follows:

(X, Y I Z) 1: Jm(Y)[~

{:} (X,Y IZUS) 1: Jm(Y)

{:} For some a E X,
m

{:} For some a E X,
(

{:} Y

E Y there is a path 1r connecting a and ,8
, on which no vertex is in Z S.

E Y there is a path I-t connecting a and
on which no vertex is Z.



The equivalence is justified thus:
Let the subsequence of vertices on 7r that are in 0 be denoted

Since Wi, Wi+l E antg({a, ,B} U Z uS),
, ••• j

\a
) .

By Lemma 4.17, Wi and Wi+l are adjacent in

since any vertices occurring between Wi and Wi+! on 7r are in L. vVe now

show by induction that for 1::; i::; n, Wi E antg[i ({a, ,B} U Z). Since WI = a,
the claim holds trivially for i 1. Now suppose that Wi E antg[i ({a, ,B} U

Z). If Wi+l t/:. antg(S) then by Lemma 4.7 Wi+l E antg[i({a,p} U Z). On

the other hand, if Wi+l E antg(S) then by Lemma 4.9, Wi+l E ung's. It
lL

follows that in 9[~ either Wi+l Wi, Wi+l --+ Wi, or Wi+! --+ "I, where I is a

vertex on a collider path between Wi and Wi+l in (9G)ant g [f({Wi,Wi+du ({a,p}uz)).

Consequently, Wi+l E antg[i({wi,a,p} U Z) = ant g[i({a,/3} U Z), by the
induction hypothesis. It now follows that for 1 ::; i ::; n, Wi and Wi+! are

adjacent in

hence a and ;3 are connected in this graph by a path on which no vertex is
in Z.

Conversely, suppose that the vertices on J.1, are (VI . .. , vrn ). Since Vj, E

ant ({a, 13} U Z) by Lemma 4.7 E antg({a, {3} Z S) As and
are adjacent in

it follows by Lemma 4.17 that and are connected by a path Vj in

\a
)

no vertex is Z are such



4.2.10 g[~ is a maximal ancestral graph

Corollary 4.19 1f9 is an ancestml gmph with ver·tex set V = OUSUL then
g[~ is a maximal ancestml gmph.

Proof: By definition there is an edge between a and ,8 in g[~ if and only
if for all sets Z ~ 0 \ {a,,8}, ({a}, {;3} I Z uS) tf Jm (9) , or equiv­
alently ({a }, {8} I Z) tf Jm (9')[~. Hence by Theorem 4.18, there is an
edge between a and ,8 in g[~ if and only if for all sets Z C 0 \ {a, p},
({a}, {p} I Z) tf Jm(g[~). Hence g[~ is maximal. 0

4.2.11 Commutativity

Theorem 4.20 1f9 is an ancestml gmph with vertex set V, and Sl, S2, L l , L 2
are disjoint subsets of V, then 9'[~~~~~ = (g[~~)[~~. Hence the following dia­
gmm commutes:

Figure 11 gives an example of this Theorem.

Proof: We first show that g[~~~~~ and (g[~~) [~~ have the same adjacencies.

Let a, ,8 be vertices in V \ (Sl U S2 U L l U L 2).

There is an edge between a and ,8 in g[~~~~~

{:} 't/Z ~ V\((SlUS2)U(LIUL2)U{a,,8}), ({a}, {8} I ZU(SlUS2)) tf Jm (9)

{:} 't/Z~ (V\(SlULl))\(S2UL2U{a,,8}), ({a},{8} I ZUS2) tf Jm (9)

(*) {:} 't/Z ~ (V\(SlULd)\(S2UL2U{a, ,({a},{8} I ZUS2) tf Jm(g[~~)

{:} There is an edge between a and ,8 in (g[~~

The equivalence marked

aa.laeent m

suppose that



a E ant

=} a E ant ({p} u 52) or a E un

=} a E ante grSI , (p) or a E Un(grSl)eLl! lLI

=} a E an\g[i~) CB)

Arguing in the other direction,

aEant(g[SI)fS2(P) =} aEant grs 1 ({p}U52)
Ll lL2 lLl

=} a E antg({p} U 51 U 52)

by Lemma 4.7;

by Corollary 4.10
and Lemma 4.9;

by Corollary 4.10
and Lemma 4.9;

since a and ,B are
adjacent.

by Lemma 4.7;

by Lemma 4.7;

by Corollary 4.10
and Lemma 4.9;

since a and pare
adjacent.

It then follows from Corollary 3.10 that g[~~~~~ = (g[~~) [~~ as required. 0

5 Extending an Ancestral Graph

In this section we prove two extension results. \Ve first show that every
ancestral graph can be extended to a maximal ancestral graph, as stated
in Section 3.7. We then show that every maximal ancestral graph may be
extended to a complete ancestral graph, and that the edge additions may
be ordered so that all the intermediate graphs are also maximal. This latter
result parallels well known results for decomposable undirected graphs
Lauritzen (1996), p.20).



5.1 Extension of an Ancestral Graph to a J\1aximal
Ancestral Graph

Theorem 5.1 If 9 is an ancestral graph then there exists a unique maximal
ancestral graph 0 formed by adding bi-directed edges to 9 such that '3m (9)
'3m (9).

Figure 13 gives a simple example of this Theorem.

(i) (ii)

Figure 13: (i) A non-maximal ancestral graph 9; (ii) the maximal extension
O. (Every pair of non-adjacent vertices in 0 are m-separated either by {c}
or {d}.)

Proof: Let 0 = 9[:. It follows from Theorem 4.18 and Proposition 4.1 (i)
that

'3m (9) '3m (9[:) '3m (9)[: = 3m (9)

as required. If Q and ,8 are adjacent in 9 then trivially there is a path m­
connecting Q and ,8 given any set Z C V \ {Q, ,8}, hence there is an edge
between Q and fJ in 9[:. Now, by Corollary 4.8, antg(Q) = ant (Q). Hence

by Lemma 3.9 every edge in 9 is inherited by 0 9[:. By Corollary 4.199[: is maximal. This establishes the existence of a maximal extension of 9.

Let 0 be a maximal supergraph of 9. Suppose Q and fJ are adjacent in 0
but are not adjacent in 9. By Corollary 4.3 there is a primitive inducing path
1r between Q and in 9, containing more than one edge. Since 1r is present
in 0, and this graph is maximal, it follows by Corollary 4.6 that Q B fJ in
0, as required. This also establishes uniqueness of O. 0

Corollaries are consequences of this result:

Corollary 5.2 9 a ma:r;'lmal a:ncestn2l if9 =



Proof: Follows directly from the definition of g[: and Theorem 5.1. 0

The next Corollary establishes the Pairwise Markov property referred to
in Section 3.7.

Corollary 5.3 If 9 is a maximal ancestral graph and a, ,8 are not adjacent
in g, then ({a}, {/3} I antg({a,,8}) \ {a,,8}) E :Jm (9).

Proof: By Corollary 5.2, 9 = g[:. The result then follows by contraposition
from Theorem 4.2, properties (i) and (iv). 0

Corollary 5.4 If 9 is an ancestral graph, a E antg(p), and a,p are not
adjacent in 9 then ({a}, {,8} [ antg( {a, p}) \ {a, p}) E :Jm (9).

Proof: If a E antg (13) then by Corollary 4.8, a E ant g[~ (,8). Hence there is

no edge a +-t ,8 in g[:, since by Theorem 4.12, g[: is ancestral. It follows

from Theorem 5.1 that a and 13 are not adjacent in g[:. The conclusion then

follows from Corollary 5.3. 0

5.2 Extension of a Maximal Ancestral Graph to a Com­
plete Graph

~or an ancestral graph 9 = (V, E), the associated complete graph, denoted
g, is defined as follows:

9 has vertex set V and an edge between every pair of distinct vertices a,
specified as follows:

a-,8

a -1- ,8

a +-t {6

if a, 13 E ung,

if a E ung U antg (13) and 13 t/:. ung,

otherwise.

Thus between each pair of distinct vertices in 9 there will be exactlv one_ v

edge. Note that although 9 is unique as defined, in general there will be
other complete ancestral graphs of which a given graph 9 is a subgraph.



Proof: (i) This follows from the construction of 0, Lemma 3.7, and pag(v) ~
antg(v).

(ii) By construction, if 0: E ung then pag(0:) USPg(0:) = 0 hence 0: E unO'.
Conversely, if 0: 1- ung then pag (0:) USpg(O:) =1= 0. By (i), pag(o:)UsPg(O:) =1= 0,
so 0: 1- unO'. Thus unO' = ung as required.

(iii) By (i), antg(v) ~ antg(v), further, by construction, unO' ~ antg(v),

thus antg(v) U ung ~ antg(v). Conversely, if 0: E antg(vo) then either 0: E

ung = unO' by (ii) or 0: rf. ung. In the latter::ase, by construction of 0 there

is a directed path 0: -7 Vn -7 .,. -7 Vo in (}, and every vertex on the path

is in V \ ung. Hence 0: E antg(vn ), and Vi E ant9(Vi_l) (i = 1, ... , n), so

0: E antg(vo).
(iv) If ;3 -7 0: in 0 then, by the construction of 0, 0: 1- ung and ;3 E

antg(o:) U ung. Hence, by Lemma 3.8(ii), 0: 1- antgCB) and thus 0: 1- antg(;3),
again by (iii). Similarly, if ;3 ++ 0: in 0 then by construction, 0: 1- ung U
antgCB), hence by (iii), 0: 1- antg(;3). Thus 0: 1- antg(pag(o:) U SPg(O:)), so

(i) in the definition of an ancestral graph holds. By the construction of 0, if
neg(o:) =1= 0 then 0: E ung, and thus, again by construction, SPg(o:)Upag(o:) =
0, hence (ii) in the definition holds as required. 0

Theorem 5.6 If (} is a maximal ancestral graph with r pairs of vertices that
are not adjacent, and (}* is any complete supergraph of (} then there exists a
sequence of maximal ancestral graphs

(}* == (}o, ... , (}r == (}

where (}i+l is a subgraph of (}i containing one less edge Ei than (}i, and
ung i +1 = ung i ·

The sequence of edges removed, (EO"'" Er-l), is such that no undirected
edge is removed after a directed edge and no directed edge is removed after a
bi-directed edge.

Two examples of this Theorem are shown in Figure 14. (The existence
of at least one complete ancestral supergraph (}* of (} is guaranteed by the
previous l.JC:;Ul1.l1<:L.

Proof: are in (}* not (}. Place an



a !3 a !3 a !3 a--!3
1 I 1~1 lXl lXlt

y..--Ay.......--.... O Y..--b y..--b

(i-a) (i-b) (i-c) (i-d)

rxI a

X
!3

X!31 1t..--t y--J

(ii-a) (ii-b) (ii-c)

Figure 14: Two simple examples of the extension described in Theorem 5.6.
In (ii) if the a +-7 (3 edge were added prior to the f +-7 <5 edge the resulting
graph would not be maximal.

(i) if a (3,~f -t <5 E E then a- (3 -< ~f -t <5;

(ii) if a -t ,8, f +-7 <5 E if then a -t (3 -< ~f +-7 <5;

(iii) if a +-7 ,8, ~f +-7 <5 E if and a, (3 E ang( {~f, <5}) then a +-7 (3 -< ~f +-7 <5;

The ordering on bi-directed edges is well-defined by Le~ma 3.11. Now let ~h

be the graph formed by removing the first i edges in E under the ordering
-<. Since go is ancestral, it follows from Proposition 3.5 that gi is too. Since
go is complete, it is trivially maximal.

Suppose for a contradiction that gi is maximal, but gi+l is not. Let the
endpoints of €i be a and (3. Since, by hypothesis, gi is maximal, for any
pair of vertices ~f, <5 that are not adjacent in gi, for some set Z, h, <5 tJ. Z),

<5 IZ) E 'JmWi) ~ 'JmWi+d (by Proposition 3.12). Since a, (3 are the only
vertices that are not adjacent in gi+l, but are adjacent in gi, it follows by
Corollaries 4.3 and 4.4 that there is a primitive inducing path 7T' between a
and in gi+l and hence also in gi'

By Corollary 4.6 it then follows that €i = a +-7

rected edges in - occur prior to €i, ang (all v E V. Bv
Lemma 4..5 every edge on 7T' is bi-directed and every vertex on path is in

. It then follows 7T' exists 9 since, if any

on 7T' .were in it would occur prior to €i. But this case, 9 is
maximal, €i is present in g, which is a contradiction.



Finally, by Proposition 3.6, ung, ~ ung i +1 , as 9i+l is a subgraph of 9i.
By Lemma 5.5(ii), ung,. == ung ung == ungo, hence ung i = ung i +1 • 0

Note that the proof shows that between 9 and any complete supergraph
90 of 9 there will exist a sequence of maximal graphs, each differing from
the next by a single edge.

6 Canonical Directed Acyclic Graphs

In this section we show that for every maximal ancestral graph 9 there
exists a DAG D(9) and sets 5, L such that D(9)[~ = 9. This result is
important because it shows that every independence model represented by
an ancestral graph corresponds to some DAG model under marginalizing and
conditioning.

6.1 The Canonical DAG 1)(9) Associated with 9

If 9 is an ancestral graph with vertex set V, then we define the canonical
DAG, D(9) associated with 9 as follows:

(i) let 5'O (g) = {(Ja(3 I00-(3 in 9}

(ii) let L'O(9) = {Aa (3 I a +-t ,8 in 9}

(iii) DAG D(9) has vertex set V U L'O(9) U 5'0(9) and edge set defined as
follows:

If { :: ~ } in 9 then {
00-,8

Figure 15 shows an ancestral graph and the associated canonical DAG.
Wermuth et al. (1994) introduced the idea of transforming a graph into a

DAG in this way by introducing additional 'synthetic' variables, as a method
of interpreting particular dependence models. also Verma and Pearl.

A rnzr.tzpatn is a path D(9) cOIltaJcllulg
in V, no vertices in

endpoints
'V(9) sets up a one



b--c

I I
~ !
x-y

(i) (ii)

Figure 15: (i) An ancestral graph; (ii) the associated canonical DAG.

to one correspondence between edges in g, and minipaths in 1)(9). If a and
,8 are adjacent in 9 then denote the corresponding minipath in 1)(9), 8aj3 .

Conversely if 8 is a minipath in 1)(9), then let 89 denote the corresponding
edge in g.

Observe that if 8aj3 and 8¢'1f; are minipaths corresponding to two different
adjacencies in g, then no non-endpoint vertices are common to these paths.

Given a path J-L in 1)(9), with endpoints in V, the path may be decom­
posed into a sequence of minipaths (8a1a2 , •.• , 8an _ 1aJ, from which we may
construct a path (al, ... ,an) in 9 by replacing each mini-path by the cor­
responding edge. We will denote this path by J-L9. Note that since 1)(9) is
a DAG, anV(g) (.) antv(9j{-), and by definition a path J-L is m-connecting
if and only if it is d-connecting. Since it helps to make clear that we are
referring to a path in a DAG, we will only use the term 'd-connecting' when
referring to a path which is m-connecting (and d-connecting) in 1)(9).

6.1.1 Graphical properties of 1)(9)

Lemma 6.1 Let 9 be an ancestral graph with vertex set V.

(i) If E V then anV(9) n V = ang

, so anV(g) ) ~ 5v (9) U un9.

(iii) anv(9) 0.

then there is a directed path 8
non-E:ndpCilnt vertex on 8 at one par-

every vertex on 8 is V
=0

Proof:
n to

ent and at



D(9) that 0 exists in g, so a E ang . It also follows from the construction
of D(9) that any directed path in 9 exists in D(Q).

(ii) By construction, pav(Q)(O"ap) = {a,p} ~ ung (by Lemma 3.7). But
again, by construction, pav(Q)(ung) = 0. Hence anv(Q)(O"ap) = {a, O"ap} ~
ung U {O"ap}, so anv(Q)(SV(g») ~ ung U SV(g).

(iii) This follows from the previous property:

o
Note that antg(p) # antV(g)(p) for ,8 E V, because an undirected edge

a - ,8 in 9 is replaced by a -+ Aap t- ,8 in D(9).

Lemma 6.2 9 is a subgraph of D(g)[~1)~9~.
1),9)

Proof: First recall that anv(Q) (-) = antV(g) (.) since D(9) is a DAG. vVe now
consider each of the edges occurring in g:

(i) If a p in 9 then a -+ O"ap t- ,8 in D(Q), so a, p E antV(g) (Sv(Q»). It

then follows that a - p in D(9)[~~~~~.

(ii) If a -+ p in 9 then a -+ ,8 in D(9), so a E antv(Q)C8). By Lemma
6.1(i), p t/:. antV(g)(a), and since further, ,8 t/:. SV(Q) U ung, by Lemma
6.1(ii), ,8 t/:. antV(Q) (SV(g»). It then follows from the definition of the

transformation that a -+ ,8 in D(9)

(iii) Likewise, if a +-+ in 9 then a t- -+ in D(9). By Lemma 6.1(i)

and (ii), it follows as in case (ii) that t/:. antV(g)({a} ,and by

symmetry, a t/:. U). Hence a +-+ in D(9)

o



6.2 The independence model 'Jm ('D(9) )

Theorem 6.3 If g is an ancestral graph then

).

o

It follows from this result that the global Markov property for ancestral
graphs may be reduced to that for DAGs: X is m-separated from Y given Z
in g if and only if X is d-separated from Y given Z U SD(G)' (However, see
Section 8.6 for related comments concerning parametrization.)

It also follows from this result that the class of independence models
associated with ancestral graphs is the smallest class that contains the DAG
independence models and is closed under marginalizing and conditioning.

vVe break the proof into three pieces:

Proof: JmCD(Q))[~:~~~ = JmCD(Q)[~:~~~ ) by Theorem 4.18.

Proof: Jm(Q) ~ Jm(1) (Q) )[~:~~~
Suppose g has vertex set V, containing vertices 0;, and set Z (0;, (3 ¢:. Z).
It is sufficient to prove that if there is a path J-t which d-connects 0; and ,8
given Z U S'O(9) in 1)(Q) then J-tg m-connects 0; and (3 given Z in g.

Suppose that r is a collider on J-Lg. In this case "I is a collider on J-L since
the corresponding minipaths collide at "I in 1)(Q). Since J-t is d-connecting
given Z U S'O(9) and "I E V,

"lE (an'O(g)(ZUS'O(9))) nv = (an'O(g)(Z)nV) U (an'O(g)(S'O(9))nV),

by Proposition 2.1. But "I ¢:. ung, so by Lemma 6.1 (ii), "l ¢:. an'O(9) (S'O(9))'
Hence "l E (an'O(9)(Z) n V) = ang(Z), the equality following from Lemma
6.1(i).
If "l is a non-collider on J-Lg then "l is a non-collider on J-L, so "l ¢:. Z U

thus ¢:. Z as required. 0

Proof: 1)(g\• J

Lemma 6.2 g
t'ro,pmntlC)ll 3.

~ Jm(Q)

is a subgraph 1)(Q\
• j the result follows



6.2.1 If 9 is maximal then 1J(9) = 9

We now prove the result mentioned at the start of this section:

Theorem 6.4 If 9 is a maximal ancestral graph then

1J(9) -9- .

Proof: By Lemma 6.2 9 is a subgraph of 1J(9) , while by Theorem 6.3
these graphs correspond to the same independence model. It then follows
from the maximality of 9 that 1J(9)l~:~~; 9. 0

7 Probability Distributions

In this section we relate the operations of marginalizing and conditioning
that have been defined for independence models and graphs to probability
distributions.

7.1 Marginalizing and Conditioning Distributions

For a graph 9 with vertex set V we consider collections of random variables
(Xv)VEV taking values in probability spaces (Xv)vEV. In all the examples
we consider, the probability spaces are either real finite-dimensional vector
spaces or finite discrete sets. For A ~ V we let XA X vEA (Xv), X == Xv
and X A == (Xv)VEA.

If P is a probability measure on Xv then as usual we define the distri­
bution after marginalizing over XL, here denoted PlxL or Px V\L' to be a
probability measure on XV\L, such that

PlxJE) == PXV\L(E) = P((XV\L,XL) E E x XL)

We will assume the existence of a regular conditional probability measure,
denoted (.) or P(· IX s = xs), for all Xs E Xs so that

P

CtllHV"u sure eqtllV,l1eJ1C€



7.2 The Set of Distributions Obeying an Independence
~Iodel (P(J))

We define conditional independence under P as follows:

where we have used the usual shorthand notation: A denotes both a vertex
set and the random variable X A .

For an independence model J over V let P(J) be the set of distributions
P on x such that for arbitrary disjoint sets A, B, Z, (Z may be empty)

if (A, BIZ) E J then AJlB IZ [Pl.

Note that if P E P(J) then there may be independence relations that are
not in J that also hold in P.

A distribution P is said to be faithful or Markov perfect with respect to
an independence model J if

(A, BIZ) E J if and only if AJlB I Z [Pl.

An independence model J is said to be probabilistic if there is a distribution
P that is faithful to J.

7.3 Relating P(Jm(Q)) and P(Jm(Q[~))

Theorem 7.1 Let J be an independence model over V with SUL c V. If
P E P(J) then

E P(JG)

Proof: Suppose (X, Y I Z) E J[~. It follows that (X, Y ! Z U S) E J and
(X U Y U Z) t;;;; V (S U L). Hence, if P E P(J) and (X, Y !Z) E J[~ then

ZuS

hence
Z



(The last step follows from the assumption that regular conditional proba­
bility measures exist. See Koster (1999a) Appendix A & B.) Since there are
finitely many triples (X, Y IZ) E J[~, it follows that

as required.

Two corollaries follow from this result:

Corollary 7.2 If 9 is an ancestral graph and P E P(Jm(Q)) then

o

(PXs a.e.).

Proof: This follows directly from Theorem 7.1 and Theorem 4.18. 0

Corollary 7.3 If N is a normal distribution, faithful to an independence
model J over vertex set V then N[~~=xS is faithful to J[~.

Proof: Since N E P(J), by normality and Theorem 7.1, N[~~=xS E P(J[~).

Now suppose (X, Y I Z) ~ J[~ where XUYuZ C V \ (5 U L). Hence
(X, Y I Z U 5) ~ J. Since N is faithful to J,

X,J::lY I Z U 5 [N] which implies

for any Xs E JR.l s1 , by standard properties of the normal distribution. 0

Note that the analogous result is not true for the multinomial distribution
as context-specific (or asymmetric) independence relations may be present.

(ii)

;:,e(;tlCIH 7



7.3.1 A non-independence restriction

The following example due to Verma and Pearl (1991), Robins (1997) shows
that there are distributions Q E P( 'Jm (9) for which there is no distribution
P E P('Jm (9)) such that Q = P[~. In other words, a set of distributions
defined via a set of independence relations may impose constraints on a given
margin that are not independence relations.

Consider the graph 9 in Figure 16(i). Marginalizing over '1jJ produces
the complete graph g[~,p} shown in Figure 16(ii), so P('Jm(g[~,p})) is the sat­
urated model containing every distribution over {0:,,8,i,8}. However, if
P E P('Jm (9)) then, almost surely under P(Xa, X,),

r P(Xs IXa, xj3, x,) dP(xj3 Ixa)
JXI3

= r r P(Xs I Xa,xj3,x
"

x,p)dP(x,p I xa,Xj3,xAI)dP(xj31 xa)
JX13 Jx,p

since I {o:, p}

lp P(Xs I Xa,x" x,p) dP(xj3, I xa)

lv, P(Xs I Xa,x" dP(x,p I xa)

r P(Xs I
Jx"

since

since
I {rv "!,}j r, tr' .

This will not hold in general for an arbitrary distribution since the last ex­
pression is not a function of . However, faithfulness is under
marginalization for distributions.



7.4 Independence JVlodels for Ancestral Graphs Are
Probabilistic

The existence of distributions that are faithful to Jm(Q) for an ancestral
graph Q follows from the corresponding result for DAGs:

Theorem 7.4 (Building on results of Geiger, 1990, Geiger and Pearl, 1990,
Frydenberg, 1990b, Spirtes et al., 1993 and Meek, 1995b.)
For an arbitrary DAG, V, Jm(V) is probabilistic, in particular there is a
normal distribution that is faithful to Jm (V).

Theorem 7.5 If Q is an ancestral graph then Jm(Q) is probabilistic, in par­
ticular there is a normal distribution which is faithful to Jm (Q) .

Proof: By Theorem 6.3 there is a DAG V(Q) such that

Jm(Q) = Jm(V(Q)[~~~~; ).

By Theorem 7.4 there is a normal distribution N that is faithful to Jm(V(Q)).

By Corollary 7.3, N[~~=xs is faithful to Jm(V(Q))[~~~~; = Jm(V(Q)[~~~~;)

Jm(Q). 0

7.4.1 Completeness of the global lVlarkov property

A graphical separation criterion C is said to be complete if for any graph Q
and independence model J*,

if Je(Q) ~ J* and P(Jc(Q)) P(J*) then Je(Q) = J*.

In other words, the independence model Je(Q) (see Section 2.1.1) cannot be
extended without changing the associated set of distributions P(Je(Q)).

Theorem 7.6 The globallvfarkov property for ancestral graphs is complete.

Proof: existence of a distribution that is faithful to Jm

sutlicilent condition for completeness.
is clearly a

o



8 Gaussian Parametrization

There is a natural parametrization of the set of all non-singular normal dis­
tributions satisfying the independence relations in :Jm(Q). In the following
sections we first introduce the parametrization, then define the set of normal
distributions satisfying the relations in the independence model, and then
prove equivalence.

Let Np (/L,2.:) denote a p-dimensional multivariate normal distribution
with mean /L and covariance matrix 2.:. Likewise let .;\fp be the set of all
such distributions, with non-singular covariance matrices.

Throughout this section we find it useful to make the following convention:
2.:A~ = (2.: AA )-1, where 2.:/1/1 is the submatrix of 2.: restricted to A.

8.1 Parametrization

A Gaussian parametrization of an ancestral graph 9, with vertex set V and
edge set E is a pair (/-l, <1», consisting of a mean function

which assigns a number to every vertex, together with a covariance function

<I>:VUE-+JR

which assigns a number to every edge and vertex in 9, subject to the re­
striction that the matrices A, n defined below are positive definite (p.d.):

ep(Q\ set, J

{
<1>(0;) if 0; =

<I> (a if a - ,8 in y,
0 otherwise;

{
<1>(0;) if 0; =

<1>(0; +-+ if 0; +-+ in 9,
0 otherwise.

9.



B=( I 0).Bdu Bdd '

{ 1 if a j3

(B)aB 1>(a +- if a+- ,8 in 9
a,PEV 0 otherwise.

Proposition 8.1 If A and n are given by a parametrization of 9 then

(i) A, n are symmetric;

(ii) for v E ung, AiJiJ > 0 and for v E V \ ung, WlJiJ > O.

Proof: Both properties follow from the requirement that A, n be positive
definite. 0

Proposition 8.2 Let 9 be an ancestral graph with vertices V, edges E. The
values taken by 1>(.) on the sets, ung U {a - j3 E E}, (V \ ung) U {a t-t j3 E

E} and {a -+ (3 E E} are variation independent as 1>(.) varies in <1>(9).
Likewise, j.t(.) and 1>(.) are variation independent.

Proof: Follows directly from the definition of a parametrization. 0

Lemma 8.3 Let 9 be an ancestral graph w'ith vertex set V. Further, let -<
be an arbitrary ordering of V such that all vertices in ung precede those in
V \ ung, and a E an(6) \ {,6} implies a -< j3. Under such an ordering, the
matrix B given by a parametrization of 9 has the form:

-1 ( I 0)and B = -B-1B B-1 ,
dd du dd

where B dd is lower triangular, with diagonal entries equal to 1. Hence B is
lower triangular and non-singular, as is B- 1

.

Note that we use u, d as abbreviations for ung, V \ ung respectively.

Proof: If a, ,8 E ung then since 9 is ancestral, a tf. chg and vice versa.
Hence by definition of B, 8(a, (where 8 is Kronecker's delta func­
tion). If a E ung, ,8 E V ung then a tf. chg ,since 9 is ancestral, hence

O. If a, E V and a then = 1 definition. If
=/: 0 ,so -< a. since 9 is anl:;estral,



where

,,-1
L./91> -

8.1.1 Definition of the Gaussian model (.;\1"(9))

A parametrization (/-L, <p) of 9 specifies a Gaussian distribution as follows:

(p,)o: = /-L(a), and 2:;91> B-1(A~1 g) B-T. (1)

The Gaussian model, .;\1"(9) associated with 9 is the set of normal distribu­
tions obtained from parametrizations of 9:

The mean function /-L does not playa significant role in what follows.

Lemma 8.4 If (/-L, <p) is a parametrization of an ancestral graph 9 then

(
A-I -A- I BLB"i})

2:;91> =
-Bd}Bdu A- l Bi}(Bdu A- I BJu +n)Bd} ,

(
A+ BLn- l Bdu BLn- l Bdd ) .

BLn- l Bdu BLn- l Bdd

Proof: Immediate from the definition of 2:;91> and Lemma 8.3. 0

Note that it follows from the conditions on B, A and n that 2:;91> is
positive definite. The mean function /-L does not play a significant role in
what follows.

8.1.2 Parametrization of a subgraph

Lemma 8.5 Let (/-L, <p) be a parametrization of an ancestral graph 9 =
(V, E). If A c V such that ant(A) A, and (/-LA, <P A) is the parametr'ization
of the induced subgraph 9A, obtained by restricting /-L to A and <P to Au
where is the set of edges in 9A, then

, nJ'l And, B AI



In words, if all vertices that are anterior to a set A in 9 are contained
in A then the covariance matrix parametrized by the restriction of <I> to the
induced subgraph gA is just the sub-matrix (Lgtf»AA.

Note the distinction between matrices indexed bv two subsets which in-- "
dicate submatrices in the usual way (e.g. LAA) and matrices indexed by one
subset which are obtained from a parametrization of an induced subgraph
on this set of vertices (e.g. BA)'

Proof: For n there is nothing to prove. Since A = ant(A), no vertex in
ung n A is adjacent to a vertex in ung \ A Thus

so (A-1)AnuAnu = AA: 1 as required.
Since A is anterior,

B (
BAA 0 )
BAA BAA '

where V \ A The result then follows by partitioned inversion since
B A = (B)AA = BAA. 0

If 9 = (V, E) is a subgraph of an ancestral graph g* = (V, E*), then there
is a natural mapping (J-L, <1» H (J-L*, <1>*) from <[>(9) to <I>(9*), defined by:

if. * ( ) = { <I> (x) if x E v.T U E,
'±' X 0 if x E E* \

<1>* simply assigns 0 to edges in g* that are not in 9 (both graphs have the
same vertex set). It is simple to see that

The next Proposition is an immediate consequence:

Proposition 8.6 zs a an arll~esl~rat graph g*



8.1.3 Interpretation of parameters

Theorem 8.7 If 9 = (V, E) is an ancestral graph, (/-L, if!) E 4>(9), and

~ I:gq" then for all vertices a for which pa(0) =I 0,

Regarding ~ as the covariance matrix for a (normal) random vector Xv,
the Theorem states that if! (0 +- v) is -1 times the coefficient of X v in the
regression of X a on Xpa(a). D is the covariance matrix of the residuals from
th~ set of regressions. A is just the inverse covariance matrix for X ung ' Hence
if I: is obtained from some unknown covariance function if! for an ancestral
graph g, then equation (2) allows us to reconstruct if! from 9 and ~.

Proof: Suppose that I: = I:gq, for some parametrization (/-L, if!). If every
vertex has no parents then B is the identity matrix and the claim holds
trivially.

Suppose that a is a vertex with pa(0) =I 0, hence by definition a E V\ung.
Let A = ant(o), e = ant(o) \ (pa(o) u {a}), p = pa(o). By Lemma 8.5,

~ -1 (A"41 0) -T (3)
LJ AA = BA 0 DABA .

Since 9 is ancestral, neg (0) n A = 0. Thus partitioning A into e, p, { a}, we
obtain

(

Bee 0 0) ( D end end Deind pnd 0 )
B A = B pe B pp 0 ,and D A = Dpndend Dpndpnd 0

o Bap 1 0 0 Waa

The expression for B{a}pa(a) Bap then follows from (3) by routine calcula­
tion. The second claim is an immediate consequence of (1). 0

one-to-one.

if!l, if!2 are two rn1inr·1n11.rp

= if!2 .). Hence

8.1.4 Identifiability

Corollary 8.8 If 9 is an an(~eSi\ral

9

Proof: follows directly
are identical.

Ihe'orem 8.7:



8.1.5 N(Y) for a complete ancestral graph is saturated

Theorem 8.9 If 9 is a complete ancestral graph then .lv(Y)

In words, a complete ancestral graph parametrizes the saturated Gaussian
model of dimension IV I.

Proof: Let I; be an arbitrary p.d. matrix of dimension IVI. It i~ sufficient to
show that there exists a covariance function <P for 9, such that_I; = I;gip. We
may apply equation (2) to obtain matrices B, A and 0 from I;. However, it
still remains to show that (a) whenever there is a non-zero off-diagonal entry
in A, 0 or B, there is an edge of the appropriate type in 9 to associate with
it, and (b) A and 0 are positive definite.

By Lemma 3.21 (ii), 9ung is complete, hence in A all off-diagonal entries
are permitted to be non-zero.

It follows directly from the construction of B given by (2) that if (B)o:l3 :f
a and cy:f (3 then (3 E pa(cy).

Now suppose, CY, ,8 E V \ ung, and there is no edge CY +-7 ,8 in 9. Since 9
is complete, it follows from Lemma 3.21(iii) that either CY +- (3, or CY -t ,8.
Without loss of generality suppose the former, and let A = ant(cy) = pa(cy) U

{CY} since 9 is complete. Then

[(
= a

as required. The same argument applies in the case where ,8 E ung, CY E
V \ ung, and hence CY +- thus establishing that BEBT is block-diagonal
with blocks and O. ~his establishes (a).

Since, by hypothesis, L; is p.d. and B is non-singular, by construction, it
follows that A and 0 are also p.d. hence holds. We now have:



8.1.6 Entries in 0- 1 and QH

If Q ,E) is an ancestral graph then we define QH to be the induced
subgraph with vertex set V, but including only the bi-directed edges in E.

Lemma 8.10 If 0, (3 E V \ ung and 0 is not adjacent to (3 in WH)a then

for any 0 obtained from a covariance function <P for Q.

Proof: (Based on the proof of Lemma 3.1.6 in Koster (1999a).)
First recall that 0 and (3 are adjacent in WH)a if and only if 0 and (3 are

collider connected in QH' The proof is by induction on Idl = IV \ ungl·
If Idl = 2 then (O-l)a~ = -(0)a~101-1 = 0 as there is no edge 0 +-+ (3 in Q.

For Idl > 2, note that by partitioned inversion:

(O-l)a~ = - (Wa~ 0{a}eo;;20e{p}) 10{a,nel-1 (4)

- (wa~ - L wa~1 (0~1 ),0 wo~) 10{a,~}.el-1 (5)
"oEe

Since 0 and ,13 are not adjacent in WH)a there is no edge 0 +-+ ,13 in Q, hence
wa~ = O. Now consider each term in the sum (5). If there is no edge 0 +-+ ~f

or no edge 5 +-+ (3 then wa , (0;:/) = O. If there are edges 0 +-+ f and
5 +-+ ,13 in Q then ~f i- 5 as otherwise 0 and ,13 would be collider connected in
QH' and further ~f and 5 are not collider connected in We) . Hence by the
inductive hypothesis, (0;:-e1 = O. Thus every term in the sum is zero and
we are done. 0

An alternative proof follows from the properties of undirected
graphical Gaussian models Lauritzen, 1996): the specification of 0
formally as if it were an for a model represented
an U. Then 0 and are not collider Q if and

if 0 and are not connected in U.



for undirected graphs, 0: and ,8 are marginally independent, so (0-1 0.
(We thank S. Lauritzen for this observation.)

It also follows directly from the previous Lemma (and this discussion) that
0-1 will be block diagonal. (We thank N. Wermuth for this observation.)

Corollary 8.11 Let 9 be an ancestral graph with 0: H (3 in 9. Let 9' be
the subgraph formed by removing the 0: H ,8 edge in 9. If 0: and ,8 are not
adjacent in (Q~,)a then

(O-l)al3 = -1>(0: H (3)10{a,I3}.cl- 1
,

where c = d\ {o:, ,B}, 1> is a covariance function for 9, and n is the associated
matrix.

Note that we adopt the convention: O{a,I3}.c = O{a,l3} when c = 0.

Proof: By the argument used in the proof of Lemma 8.10, it is clear that the
sum in equation (5) is equal to 0. The result then follows since, by definition,
wa l3 = <I>(o: H ,B). 0

8.2 Gaussian Independence Models

A Gaussian independence model, JV('J) , is the set of non-singular normal
distributions obeying the independence relations in J:

N(J) == JVlvl n P(I)

where V is the set of vertices in J. As noted in Section 7, normal distributions
in JV(J) may also satisfy other independence relations.

Proposition 8.12 If 9' is a subgraph of 9 then jV(Jm(Q')) ~ JV('Jm(Q)).

oProof: Follows directly from Proposition 3.

Theorem 8.13 If 91,92 are two ancestral graphs then

JV(Jm(Qd) = JV('Jm(Q2)) if and only if Jm(Qd = Jm(Q2).

Proof: If Jm(Qd = Jm(Q2), then .rV('Jm(Qr)) = A(('Jm(Q2)) by definition.
By Theorem 7.5 there is a normal distribution that is faithful to

Jm(Ql)' Hence

o
cE

<'1"0'1110(1 symmetrically.

B E



8.3 Equivalence of Gaussian Parametrizations and In­
dependence Models for Maximal Ancestral Graphs

The main result of this section is the following:

Theorem 8.14 If 9 is a maximal ancestral graph then

In words, if 9 is a maximal ancestral graph then the set of normal distri­
butions that may be obtained by parametrizing 9 is exactly the set of normal
distributions that obey the independence relations in Jm(Q).

Note that Wermuth et al. (1994) refer to a 'parametrization' of an in­
dependence model when describing a parametrization of a (possibly proper)
subset of N"(J). To distinguish their usage from the stronger sense in which
the term is used here, we may say that a parametrization is full if all distri­
butions in N'(J) are parametrized. In these terms Theorem 8.14 states that
if 9 is maximal then the parametrization of 9 described in Section 8.1 is a
full parametrization of N(Jm(Q)).

8.3.1 N(Q) when 9 is not maximal

If 9 is not maximal then N(Q) is a proper subset of A((Jm(Q)), as the follow­
ing example illustrates: consider the non-maximal ancestral graph 9 shown
in Figure 9(a). Since Jm(Q) = 0, JV(Jm(Q)) = N 4 , the saturated model.
However, there are 10 free parameters in N'4 and yet there are only 5 edges
and 4 vertices, giving 9 parameters in /..J(Q). Direct calculation shows that

o

where This will clearly not hold for all distributions in JV4 .

8.3.2 If 9 is maximal then JV(Jm(Q)) s;:: JV(Q)

\rVe first require two Lemmas:

Lemma 8.15



In words, if in a graph g, removing an edge, E, between 0: and /3 results in
a graph that is still maximal, then in any distribution Ngwf> obtained from a
parametrization (p, <p) of g, if the partial correlation between 0: and ,8 given
V \ {o:, j3} is zero, then <P assigns zero to the edge E.

Proof: There are three cases, depending on the type of the edge E:

(1) E is undirected;

In this case 0:,13 E ung. Then by Lemma 8.4,

(2:- 1 )a/3 = (1\ + BJuO- 1B du )a(3'

However, since V antg({o:,j3}), d = 0, hence (2:- 1 )a/3 (1\)a/3
<p(o: 13), so <p(o: - ,8) = 0 as required.

(2) E is directed;

Without loss, suppose 0: +- 13. It now follows from Lemma 8.4, that

BJ{a}O-l B d{/3}

L b'Ya(O-l )'YSbii /3'
'Y,iiEd

Now, b'Ya = 0 for 0: =1= ! since chg(o:) 0, and baa = 1 by definition.
Hence

(2:- 1 )a/3 = L(O-l)aiibii/3.
iiEd

Since 13 --+ 0:, E antg(O:), so V antg(o:). Thus if 0 E V, 0: =1= 0, and
0: and 0 are connected by a path 1r in gf-+' containing more than one
edge (see p.60), then 1r is a primitive inducing path between 0: and 0
in g. But this is a contradiction, since 0 E antg (0:), and yet by Lemma
4.5 (ii), 0 t/: antg(o:). Hence by Lemma 8.10, (0.- 1 = 0 for 0 =1= 0:.
Consequently,

> o. = O.



(3) € is bi-directed.

Again it follows from Lemma that

(2:;-l)ap BI{a}O,-l B d

L b'{a(O,-l)'{sbsp .
'{,SEd

As chg({o:, ,B}) 0, b'{a 0 for 1 t= 0:, and likewise bS(3 = 0 for 6 t= /3.
By definition, bp(3 = baa = 1. Since, by hypothesis, 9' is maximal, 0:

and /3 are not adjacent in (9~)a, so

the second equality following by Corollary 8.11. Hence <p(o: t-t l3) = 0
as required. 0

Note that case (2) could alternatively have been proved by direct appeal
to the interpretation of <p(0: t- /3) as a regression coefficient, as shown by
Theorem 8.7. However, such a proof is not available in case (3), and we
believe that the current proof provides greater insight into the role played by
the graphical structure.

The next Lemma provides the inductive step in the proof of the claim
which follows.

Lemma 8.16 Let 9 = (V, E) be an ancestral graph and € an edge in E. If
9' = (V, E \ {€}) is maximal, and ung ungl, then

Proof: Let JV E J'v(9) n JV(:Jm (9')) , with covariance matrix and para­
metrization <Pg. Let € have endpoints 0:, Since ung = ungl it is sufficient
to show that <Pol€) = 0, because in this case, the restriction of <Pg to the
edges (and vertices) in 9' is a parametrization of 9', hence E .N(9').

Let it = antg l • Since 0:, are not adjacent in 9'
and 91 is maximal, it follows Corollary

E



Since E JV(:Jm (9/)) , it then follows from standard properties of the Normal
distribution that = O. By Lemma 8.5 ~A;1 is parametrized by <P i\'

the restriction of <Pg to the edges and vertices in the induced subgraph 9A'
The result then follows by applying Lemma 8.15 to 9,,\, giving <p;\(€)
<Pg(€) = O. 0

We are now in a position to prove that if 9 is maximal then all distri­
butions in JV(:Jm (9)) may be obtained by parametrizing 9. This constitutes
one half of Theorem 8.14:

Claim: If 9 is maximal then N (:Jm (9)) t;;;; N (9).

Proof: Suppose N E .Af(:Jm (9)). Let Q be the completed graph defined in
Section 5.2. By Theorem 8.9, J\J1vl = N(Q), hence N E ~(Q). By Theorem

5.6, there exists a sequence of maximal ancestral graphs 9 == 90, ... ,9r == 9
where T is the number of non-adjacent vertices in 9 and ungo = . . . ung"
Now by Proposition 8.12,

N(:Jm(9r)) C .,. C N(:Jm(9o)) = Nlvl

hence N E N(:Jm(9i)), for 0 s:; i s:; T. We thus may apply Lemma 8.16
T-times to show successively

for i = 0 to T - 1. Hence N E JV(9r) =../\/(9) as required.

8.3.3 N(9) obeys the global Markov property for 9

The following lemma provides a partial converse to Lemma 8.15.

Lemma 8.17 If <P is a covaTiance function fOT an ancestral graph 9
(V, E), and 0:, ,8 E V aTe not adjacent in (9)a then (~g~)aB = O.

Proof: There are two cases to consider:

0: ung or t/:.

o



If b~la -# 0 and -# 0 then there are edges Q -t ~/, ,8 -t 0 in g, hence
! -# 0, f3 -# ! and Q -# 0 since otherwise Q and are adjacent in (Q)Q.
Further, there is no path between! and 0 in gH since if there were, Q

and ,8 would be collider connected in g, hence adjacent in (Q)a. Thus
~I and 0 are not adjacent in (QH)Q and so by Lemma 8.10 (0- 1)'1'5 = O.
Consequently every term in the sum in (6) is zero as required.

(2) Q, f3 E ung.

Again by Lemma 8.4:

(2:Q~)aJ3 = AaJ3 + L b'Ya(O-l )'Y5b5J3'
'Y,5Ed

(7)

If Q, f3 are not adjacent in (Q)Q then Q and f3 are not adjacent in g.
Hence AaJ3 = O. The argument used in case (1) may now be repeated
to show that every term in the sum in (7) is zero. 0

The next lemma proves the second half of Theorem 8.14. It does not
require g to be maximal, so we state it as a separate lemma.

Lemma 8.18 If g is an ancestral graph then N(Q) <;;;; N(:Jm(Q)).

In words, any normal distribution obtained by parametrizing an ancestral
graph g obeys the global Markov property for g.

Proof: Suppose that (X, Y I Z) E :Jm(Q). If v E antg(XUYUZ) \ (XUYUZ)
then in (Qant(XuYUZ))Q either v is separated from X by Z, or from Y by Z.
Hence X and Y may always be extended to X*, y* respectively, such that
(X*, y* I Z) E :Jm(Q) and X* U y* U Z antg(X U Y U Z). Since the
multivariate normal density is strictly positive, for an arbitrary N E .l\0vl'

(C5\. ) Al.LB ICuD and Al.LC IBUD implies UCID
I

(see Dawid, 1980). By repeated application of C5 it is sufficient to show that
for each pair Q, j3 with Q E X*, f3 E Y*,

X*



Lemmas 8.17 and 8.18 are based on Lemma 3.1.6 and Theorem 3.1.8
in Koster (1999a), though these results concern a different class of graphs
(see Section 9.2). An alternative proof of Lemma 8.18 for ancestral graphs
without undirected edges is given in Spirtes et al. (1996, 1998).

8.3.4 Distributional equivalence of Markov equivalent models

The following corollary states that two maximal ancestral graphs are Markov
equivalent if and only if the corresponding Gaussian models are equivalent.

Corollary 8.19 For maximal ancestral graphs, 9ll 92,

Proof:

N(Qd = N(92) <¢=} N(Jm(Qr)) = N(Jrn(Q2))

<¢=} Jm(Qd= Jm(Q2)

by Theorem 8.14;

by Theorem 8.13.
o

Corollary 8.20 If 9 (V, E) is an ancestral graph and SuL c V,

if N E JV(Q) then N[~~=xs E N(9[~).

for all Xs E ]Rlsl.

Proof: By Lemma 8.18 JV(Q) ~ N(Jm(Q)). Hence by normality and Theo­
rem 7.1 N[~~=xs E J\r(Jm(Q)[~). Finally, by Corollary 4.19 9[~ is maximal,
hence

by Theorem 4.18 and Theorem 8.14. 0

Suppose that we postulate a Gaussian model JV(Q) with complex struc­
ture, such as a DAG containing latent variables and/or selection variables.
This corollary is significant because it guarantees that if .JV(Q) contains the
'true' distribution N*, and we then simplify 9 to a model for the observed
variables, .\f( 9[~), then the new model will contain the true 'observable'
distribution obtained by marginalizing the unobserved variables and condi­
tioning on the selection variables, N[~~=xs. (The distribution is

bec:aw,e it is distribution over observed HUHkv'J.~0

U subpopulation for
this will Ob'VlOUSJ.v



8.4 Gaussian Ancestral Graph l\r1odels Are Curved Ex-
ponential Families

Let S be a full regular exponential family of dimension m with natural pa­
rameter space e ~ , so S {Po leE e}. If U is an open neighbourhood
in 8, then SU = {Po leE U}. Let So be a sub-family of S, with 8 0 the
corresponding subset of 8.

If A is open in jRm then a function f : A -+ jRm is a d'iffeomorphism of
A onto f(A) if f(·) is one-to-one, smooth (infinitely differentiable), and of
full rank everywhere on A. Corollary A.3 in Kass and Vos (1997) states that
a function f is a diffeomorphism if it is smooth, one-to-one, and the inverse
f- 1 : f(A) -+ A is also smooth.

Theorem 4.2.1 in Kass and Vos (1997) states that a subfamily So of an
m-dimensional regular exponential family S is a locally parametrized curved
exponential family of dimension k if for each eo E 8 0 there is an open neigh­
bourhood U in 8 containing eo and a diffeomorphism f : U -+ jRk X jRm-k,

and
sf = {po E SU I f(e) ('l/J, O)} .

We use the following fact in the next Lemma:

Proposition 8.21 If f is a rational function defined everywhere on a set D
then f(n) is a rational function defined everywhere on D.

Proof: The proof is by induction on n. Suppose f(n) = gn/hn, where gn, hn
are polynomials, and hn > 0 on D. Then f(n+l) = (hng~ - gnh~)/h;i from
which the conclusion follows (since h~ > 0 on D). 0

Let "E~I denote the cone of positive definite IVI x IVI matrices.

Lemma 8.22 If g is a complete ancestral graph then the mapping

f9 : <l>W) Ix"E~1 by

is a diffeomorphism from <l>W) to

Proof: Corollary 8.8 establishes
8.9, hence

is one-to-one. Further, by Theorem

f(<I>



It remains to show that fg, f9
1 are smooth. It follows from equation (1)

that the components of fg are rational functions of (p" <p), defined for all
<p) E <I>(9). Hence, by Proposition 8.21, fg is smooth. Similarly, equation

(2) establishes that f9
1 is smooth. 0

Theorem 8.23 For an ancestral graph 9(V, E), N(9) is a curved exponen­
tial family, with dimension 2 ·IVI + lEI.

Proof: This follows from the definition of '/\[(9), the existence of a complete
ancestral supergraph of 9 (Lemma 5.5), Lemma 8.22 and Theorem 4.2.1 of
Kass and Vos (1997), referred to above. 0

The BIC criterion for the model N(9) is given by

BIC(9) = -21n Lg ({}) + In(n)(2 . IVI + lEI),

where n is the sample size, L g (·) is the likelihood function and eis the cor­
responding MLE for ./1/(9). A consequence of Theorem 8.23 is that BIC(·) is
an asymptotically consistent criterion for selecting among Gaussian ancestral
graph models (see Haughton, 1988).

By contrast, Geiger et al. (2001) have shown that simple discrete DAG
models with latent variables do not form curved exponential families.

8.5 Parametrization via Recursive Equations with Cor­
related Errors

The Gaussian model N(9) can alternatively be parametrized in two pieces
via the factorization of the density:

(8)

The undirected component fung may be parametrized via an undirected
graphical Gaussian model also known as a covariance selection model
(see Lauritzen, 1996, Dempster, 1972).

directed component,
set as follows:

, may be parametrized via a



(i) Associate with each v in V ung a linear equation, expressing Xv
as a linear function of the variables for the parents of v plus an
error term:

Xv fJv + L b~1T' X 1T tv·
1TEpa(v)

(ii) Specify a non-singular multivariate normal distribution over the
error variables (tv )vEV\ung (with mean zero) satisfying the condi­
tion that

if there is no edge a +-+ (3 in g, then Cov (teo t /3) = 0,

but otherwise unrestricted.

Note that b~/3 = -ba /3 under the parametrization specified in Section 8.l.
The conditional distribution, !(XV\ung I xung ), is thus parametrized via a
simultaneous equation model, of the kind used in econometrics and psycho­
metrics since the 1940's. Vve describe the system as 'recursive' because the
equations may be arranged in upper triangular form, possibly with correlated
errors. (Note that some authors only use this term if, in addition, the errors
are uncorrelated.) As shown in Theorem 8.7 the set of recursive equations
described here also has the special property that the linear coefficients may
be consistently estimated via regression of each variable on its parents. This
does not hold for recursive equations in general.

8.5.1 Estimation procedures

The parametrization described above thus breaks /v(9) into an undirected
graphical Gaussian model and a set of recursive equations with correlated er­
rors. This result is important for the purposes of statistical inference because
software packages exist for estimating these models: MIM (Edwards, 1995)
fits undirected Gaussian models via the IPS algorithm; AMOS (Arbuckle,
1997), EQS (Bentler, 1986), Proc CALIS (SAS Publishing, 1995) and LIS­
REL (Joreskog and Sorbom, 1995) are packages which fit structural equation
models via numerical optimization. Fitting the two components separately

of factorization of the likelihood equation
Var'latlon mdlep,=ndlen(~e of



It should be noted that the equations used in the parametrization above
are a very special (and simple) subclass of the much more general class of
models that structural equation modelling packages can fit e.g. they only
contain observed variables. This motivates the future development of special
purpose fitting procedures.

8.5.2 Path diagrams

Path diagrams, introduced by Sewall Wright (1921, 1934), contain directed
and bi-directed edges, but no undirected edges, and are used to represent
structural equations in exactly the way described in (i) and (ii) above. Hence
we have the following:

Proposition 8.24 If 9 is an ancestral graph containing no undirected edges
then N(9) is the model obtained by regarding 9 as a path diagram.

Further results relating path diagrams and graphical models are described
in Spirtes et al. (1998), Koster (1999a,b, 1996) and Spirtes (1995). The rela­
tionship between Gaussian ancestral graph models and Seemingly Unrelated
Regression (SUR) models (Zellner, 1962) is discussed in Richardson et al.
(1999).

8.6 Canonical DAGs Do Not Provide a Full Parametriza­
tion

It was proved in Section 6 that the canonical DAG D(9) provides a way of
reducing the global Markov property for ancestral graphs to that of DAGs.
It is thus natural to consider whether the associated Gaussian independence
model could be parametrized via the usual parametrization of this DAG. In
fact, this does not parametrize all distributions in N(J'm(9)) as shown in the
following example:

Consider the ancestral graph 91, and the associated canonical DAG,
D(9d shown in Figure 17(i-a) and (i-b). Since J'mWd 0, .Ar(J'mWd) = '/V3
the saturated model on 3 variables. However, if is a distribution given by
a parametrization of D(91), then it follows by direct calculation that



(i-a) (i-b)

Z--w

(ii-a) (ii-b)

Figure 17: (i-a) An ancestral graph ~h; (i-b) the corresponding canonical
DAG, D(91); (ii-a) an ancestral graph g2; (ii-b) the canonical DAG, D(92).

where Pvw is the correlation between Xv and X w (see Spirtes et al., 1998).
Since this does not hold for all distributions in N3 , there are normal distri­
butions N E N(:Jm (91)) for which there is no distribution N* E N(D(91))
such that N = N*[{A A A "

ab' be' acf

Lauritzen (1998) p.12 gives an analogous example for conditioning, by
considering the graph g2, with canonical DAG, D(92), shown in Figure 17(ii­
a) and (ii-b). Lauritzen shows that there are normal distributions N E
.A((:Jm(92)) , for which there is no distribution N* E ./V(D(92)) such that
lV = lV*[{uXY,uXZ,uZW,uyw}.

These negative results are perhaps surprising given the very simple nature
of the structure in D(9), but serve to illustrate the complexity of the sets of
distributions represented by such models.

9 Relation to Other Work

The problem of constructing graphical representations for the independence
structure of DAGs under marginalizing and conditioning was originally posed
by N. \Vermuth in 1994 in a lecture at CMU. \Vermuth, Cox and Pearl devel­
oped an approach to this problem based on summary graphs (see Wermuth
et al., 1994, 1999, Cox and 'Wermuth, 1996, Wermuth and Cox, 2000). More
recently J. Koster has introduced another class of graphs, called lVfG-graphs,
together with an operation of marginalizing and conditioning. Koster,
2000,

l\IHJ-graJ)hs resulting



after marginalizing (i) and conditioning (ii).
Simple representations for DAGs under marginalization alone were pro­

posed by Verma (1993), who defined an operation of projection which trans­
forms a DAG with latent variables to another DAG in which each latent
variable has exactly two children both of which are observed (called a 'semi­
Markovian model'). The operation is defined so that the DAG and its projec­
tion are Markov equivalent over the common set of observed variables. This
approach does not lead to a full parametrization of the independence model
for the reasons discussed in Section 8.6.

In this section we will briefly describe the classes of summary graphs and
MC-graphs. vVe then outline the main differences and similarities to the
class of maximal ancestral graphs. Finally we discuss the relation between
ancestral graphs and chain graphs.

9.1 Summary Graphs

A summary graph is a graph containing three types of edge -t,
Directed cycles may not occur in a summary graph, but it is possible for
there to be a dashed line (0; ---- .8) and at the same time a directed path
from 0; to (3. Thus there may be two edges between a pair of vertices, e.g.
0; -.:..:t (3. This is the only combination of multiple edges that is permitted.
The separation criterion for summary graphs is equivalent to m-separation
after substituting bi-directed edges (f-+) for dashed edges ( ---- ).

vVermuth et al. (1999) presents an algorithm for transforming a summary
graph so as to represent the independence structure remaining among the
variables after marginalizing and conditioning. This procedure will not, in
general, produce a graph that obeys a pairwise Markov property, hence there
may be a pair of vertices a, ,8 that are not adjacent and yet there is no subset
Z of the remaining vertices for which the model implies o;lL(3 I Z. The graph
in Figure 18(i-c) illustrates this. There is no edge between a and c, and yet
a.)ic and a.)ic ! b. This example also illustrates that there may be more
edges than pairs of adjacent vertices in a summary graph.

Wermuth and Cox (2000) present a new method for constructing a sum­
mary graph based on applying 'sweep' operators to matrices whose entries
indicate presence or absence of edges. Kauermann (1996) analyses the

summary involve which are
known as ~vvUJ.J.UJ.J.~~ rrr·:v,-,r,c



[1 [2

UbUc a~c a::.::.:.::.;.b::.::.:.::.;.c a~b~c

(i-a) (i-b) (i-c) (i-d)

s
t ~ ~ a-(j-c

a-b-c a--b--c a--b--c

(ii-a) (ii-b) (ii-c) (ii-d)

Figure 18: (i-a) a DAG generating process 1)1; (i-b) the ancestral graph
1)d~llh}; the summary graph (i-c) and MC-graph (i-d) resulting from
marginalizing h, 12 in 1)1. (ii-a) a DAG generating process 1)2; (ii-b) the
ancestral graph 1)2[~s}; the summary graph (ii-c) and MC-graph (ii-d) result­
ing from conditioning on s in 1)2'

9.2 MC-Graphs

Koster (1999a,b) considers Me-graphs, which include the three edge types
,-+, +-+, but in addition may also contain undirected self-loops (see vertex

b in Figure 18(ii-d)). Up to four edges may be present between a pair of
vertices, e.g.

Q ,8.

The global Markov property used for MC-graphs is identical to the m­
separation criterion (Koster names the criterion 'd-separation' because it is
a natural generalization of the criterion for DAGs). Koster presents a pro­
cedure for transforming the graph under marginalizing and conditioning. As
with the summary graph procedure the transformed graph will not generally
obey a pairwise Markov property, and may have more edges than there are
pairs of vertices.

9.3 Comparison of Approaches

graLphs, summary rrr"rd""

in mind. hence it is not sur-



prising that in certain respects they are similar. However, there are also a
number of differences between the approaches.

For the rest of this section we will ignore the notational distinction be-
tween dashed lines ( ) and bi-directed edges (+-+) by treating them as if
they were the same symbol.

9.3.1 Graphical and Markov structure

The following (strict) inclusions relate the classes of graphs:

maximal ancestral C ancestral C summary C MC.

Essentially the same separation criterion is used for ancestral graphs, sum­
mary graphs and MC-graphs. Further, defining JI[.] to denote a class of
independence models, we have:

JI[maximal ancestral] JI[ancestral] = JI[summary] C JI[MC].

re(]Uires pairwise
mary gn:tptls

The first equality is Theorem 5.1, the second equality follows by a con­
struction similar to the canonical DAG (Section 6). The last inclusion is
strict because MC-graphs include directed cyclic graphs which, in general,
are not Markov equivalent to any DAG under marginalization and condition­
ing (Richardson, 1996). In addition, there are MC-graphs which cannot be
obtained by applying the marginalizing and conditioning transformation to a
graph containing only directed edges: Figure 19 gives an example. Thus the
class of MC-graphs is larger than required for representing directed graphs
under marginalizing and conditioning. The direct analogues to Theorems 6.3
and 6.4 do not hold.

In the summary graph formed by the procedures described in Wermuth
et al. (1999), Wermuth and Cox (2000), the configurations ~/---- and

~( f- never occur. This is equivalent to condition (ii) in the definition
of an ancestral graph. Consequently, as noted by 'Wermuth et al. (1999) a
decomposition of the type shown in Figure 4 is possible for summary graphs.
However, though directed cycles do not occur in summary graphs, the ana-
logue to condition does not hold, since it is possible to have an edge a ----
and a directed path from a to .

m~trginallizing and sum-



Figure 19: An MC-graph which cannot be obtained by applying the marginal­
izing and conditioning transformation given by Koster (2000) to a graph
which contains only directed edges. Further, the independence model corre­
sponding to this MC-graph cannot be obtained by marginalizing and condi­
tioning an independence model represented by a directed graph.

tests of m-separation to be carried out in order to determine the adjacencies
present in g[~. This may make the transformation harder for a human to
carry out. On the other hand the transformation given by \;Vermuth is recur­
sive, and tests for the existence of an m-connecting path can be performed
by a recursive procedure that only examines triples of adjacent vertices. It
can be said that the MC-graph and summary graph transformations may in
general be performed in fewer steps than the ancestral graph transformation.

However, a price is paid for not performing these tests of m-separation:
whereas g[~ always obeys a pairwise Markov property (Corollary 4.19), the
summary graphs and MC graphs resulting from the transformations do not
do so in general. This is a disadvantage in a visual representation of an
independence model insofar as it conflicts with the intuition, based on sepa­
ration in undirected graphs, that if two vertices are not connected by an edge
then they are not directly connected and hence may be made independent by
conditioning on an appropriate subset of the other vertices.

9.3.2 Gaussian parametrization

For summary graphs, as for ancestral graphs, the Gaussian parametrization
consists of a conditional distribution and a marginal distribution. Once again,
the marginal parametrization is specified via a covariance selection model and
the conditional distribution via a system of structural equations of the type
used in econometrics and psychometrics as described in Section 8.5 (see Cox

Wermuth, 1996). Under this parametrization one is associated
vertex the

auvv'c. it is possible a summary to more



edges than there are pairs of adjacent vertices. Consequently, the Gaussian
model associated with a summary graph will not be identified in general, and
the analogous result to Corollary 8.8 will not hold. Thus the summary graph
model will sometimes contain more parameters than needed to parametrize
the corresponding Gaussian independence model.

On the other hand, as mentioned in the previous section, summary graphs
do not satisfy a pairwise Markov property, and hence the associated model
will not parametrize all Gaussian distributions satisfying the Markov prop­
erty for the graph. In particular, the comments concerning non-maximal
ancestral graphs apply to summary graphs (see Section 8.3.1). In other
words, parametrization of a summary graph does not, in general, lead to a
full parametrization of the independence model (see Theorem 8.14). In this
sense the summary graph model sometimes contains too few parameters.

As a consequence, two Markov equivalent summary graphs may represent
different sets of Gaussian distributions, so the analogue to Corollary 8.19 does
not hold. Thus for the purpose of parametrizing Gaussian independence
models, the class of maximal ancestral graphs has advantages over summary
graphs (and non-maximal ancestral graphs).

It should be stressed, however, that the fact that a summary graph model
may impose additional non-Markovian restrictions can be seen as an advan­
tage insofar as it may lead to more parsimonious models. For this purpose
ideally one would wish to develop a graphical criterion that would also allow
the non-independence restrictions to be read from the graph. In addition,
one would need to show that the analogue to Corollary 8.20 held for the
transformation operation, so that any non-Markovian restrictions imposed
by the model associated with the transformed summary graph were also im­
posed by the original model. Otherwise there is the possibility that while
the original model contained the true population distribution, by introducing
an additional non-Markovian constraint, the model after transformation no
longer contains the true distribution. The approach in Wermuth and Cox
(2000) considers the parametrization as derived from the original DAG in
the manner of structural equation models with latent variables. Under this
scheme the same summary graph may have different parametrizations. An
advantage of this scheme is that the strengths of the associations may be
calculated if we know parameters of the generating DAG.

note the linear the equations in a
summary model not a population interpretation as
rel1:ression coefficients. This is may be an edge Q . (3 and a



directed path from G to (However, coefficients associated with edges v <5

where v is a vertex in the undirected subgraph do have this interpretation,
as noted by 'Wermuth and Cox (2000).) Hence the analogue to Theorem 8.7
does not hold for all summary graphs.

Koster (1999a,b) does not discuss parameterization of MC-graphs, how­
ever all of the above comments will apply to any parametrization which
associates one parameter with each vertex and edge. Indeed, under such
a scheme identifiability will be more problematic than for summary graphs
because MC-graphs permit more edges between vertices in addition to self­
loops.

9.4 Chain Graphs

A mixed graph containing no partially directed cycles, and no bi-directed
edges is called a chain graph. (Recall that a partially directed cycle is an
anterior path from G to ,8, together with an edge f3 ....-.+ G.) There is an
extensive body of work on chain graphs. (See Lauritzen (1996) for a review.)

As was shown in Lemma 3.2(c) an ancestral graph does not contain par­
tially directed cycles, hence we have the following:

Proposition 9.1 If 9 is an ancestral graph containing no bi-directed edges
then 9 is a chain graph.

In fact, it is easy to see that the set of ancestral chain graphs are the
recursive 'causal' graphs introduced by Kiiveri et al. (1984); see also Lauritzen
and Richardson (2002) and Richardson (2001).

Two different global Markov properties have been proposed for chain
graphs. Lauritzen and Wermuth (1989) and Frydenberg (1990a) proposed
the first Markov property for chain graphs. More recently Andersson et al.
(2001, 1996) have proposed an alternative Markov property. vVe will denote
the resulting independence models JnvF(Q) and JAMP(Q) respectively.

The m-separation criterion as applied to chain graphs produces yet an­
other Markov property. (This observation is also made by Koster (1999a).) In
general all properties will be different, as illustrated by the chain graph

Figure 20(i). Under both the AMP and LWF properties in GGl,
this not hold under because the path a x - y +- b

m-connects b implies
is not implied by that



under m-separation this chain graph is Markov equivalent to an undirected
graph.

a b f c d

! ! ~ ! !
x--y q-r-s u.......v.....-..-w

(i) (ii) (iii)

Figure 20: Chain graphs that are not Markov equivalent to any ancestral
graph under (i) the LvVF property, (ii) the AMP property; (iii) an ancestral
graph for which there is no Markov equivalent chain graph (under either
Markov property).

However, if we restrict our attention to ancestral graphs then we have the
following proposition:

Proposition 9.2 If 9 is an ancestral graph which is also a chain graph then

This proposition is an immediate consequence of clause (i) in the defi­
nition of an ancestral graph which implies that there are no immoralities,
flags or bi-flags in an ancestral mixed graph. (See Frydenberg (1990a) and
Andersson et al. (1996) for the relevant definitions.)

Finally, note that under both the LWF and AMP Markov properties there
exist chain graphs that are not Markov equivalent to any ancestral graph.
Examples are shown in Figure 20(i),(ii). It follows that these Markov models
could not have arisen from any DAG generating process. (See Lauritzen and
Richardson (2002) and Richardson (1998) for further discussion.) Conversely,
Figure 20(iii) shows an example of an independence model represented by an
ancestral graph that is not Markov equivalent to any chain graph (under
either chain graph Markov property).

10 Discussion

In paper we
purpose in

of anc:estTal LHOcL1\.VJV models.



Markov structure of a DAG model under marginalizing and conditioning. To
this end we defined a graphical transformation 9 M 9[~, which corresponded
to marginalizing and conditioning the corresponding independence model
(Theorem 4.18).

If a DAG model containing latent or selection variables is hypothesized
as the generating mechanism for a given system then this transformation will
allow a simple representation of the Markov model induced on the observed
variables.

However, often graphical models are used for exploratory data analysis,
where little is known about the generating structure. In such situations the
existence of this transformation provides a guarantee: if the data were gen­
erated by an unknown DAG containing hidden variables then we are ensured
that there exists an ancestral graph which can represent the resulting Markov
structure over the observed variables. Hence the problem of additional and
misleading edges encountered in the introduction may be avoided. In this
context the transformation provides a justification for using the class of an­
cestral graphs.

However, any interpretation of the types of edge present in an ances­
tral graph which was arrived at via an exploratory analysis should take into
account that there may exist (many) different graphs that are Markov equiv­
alent. Spirtes and Richardson (1997) present a polynomial-time algorithm
for testing Markov equivalence of two ancestral graphs. Spirtes et al. (1995,
1999) describe an algorithm for inferring structural features that are com­
mon to all maximal ancestral graphs in a Markov equivalence class. For
instance, there are Markov equivalence classes in which every member con­
tains a directed path from some vertex a to a second vertex ;3; likewise in
other Markov equivalence classes no member contains a directed path from a
to ;3. At the time of writing there is not yet a full characterization of common
features, such as exists for DAG Markov equivalence classes (see Andersson
et al., 1997, Meek, 1995a).

Finally, we showed that maximal ancestral graphs lead to a natural para­
metrization of the set of Gaussian distributions obeying the global Markov
property for the graph. Conditions for the existence and uniqueness of max­
imum likelihood estimates for these models is currently an open question.

Development of a parametrization for distributions is another
area of current Markov prop-

a
Markc>v prop-



erty, and may thus facilitate the development of a discrete parametrization.
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A Appendix

A.I Definition of a Mixed Graph

Let £ = { - ,+-,.....-?, f-t}, be the set of edges. Let 'P(£) denote the power set
of £. Formally, a mixed graph 9 (V, E) is an ordered pair consisting of
a finite set V, and a mapping E : V x V .....-? 'P(£), subject to the following
restrictions:

E(a, 0

.....-? E

E

E

H E a,



The induced subgraph, gA of 9 on A ~ V, is (A,
restriction of to A x A.

where EIA is the natural
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